當前位置: 首頁>>代碼示例>>Python>>正文


Python tree.DecisionTreeRegressor方法代碼示例

本文整理匯總了Python中sklearn.tree.DecisionTreeRegressor方法的典型用法代碼示例。如果您正苦於以下問題:Python tree.DecisionTreeRegressor方法的具體用法?Python tree.DecisionTreeRegressor怎麽用?Python tree.DecisionTreeRegressor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.tree的用法示例。


在下文中一共展示了tree.DecisionTreeRegressor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_regression

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeRegressor [as 別名]
def test_regression():
    # Check regression for various parameter settings.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(boston.data[:50],
                                                        boston.target[:50],
                                                        random_state=rng)
    grid = ParameterGrid({"max_samples": [0.5, 1.0],
                          "max_features": [0.5, 1.0],
                          "bootstrap": [True, False],
                          "bootstrap_features": [True, False]})

    for base_estimator in [None,
                           DummyRegressor(),
                           DecisionTreeRegressor(),
                           KNeighborsRegressor(),
                           SVR(gamma='scale')]:
        for params in grid:
            BaggingRegressor(base_estimator=base_estimator,
                             random_state=rng,
                             **params).fit(X_train, y_train).predict(X_test) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:22,代碼來源:test_bagging.py

示例2: fit

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeRegressor [as 別名]
def fit(self, X, y):
        """
        Method:
         1) Create n_estimator tree estimators with greedy splitting
         2) For each estimator i, sample (X, y) randomly N times with replacement
            and train the estimator on this sampled dataset (X_i, y_i)
         3) Predict by taking the mean predictions of each estimator
        """
        self.models = []
        N = len(X)
        for i in range(self.n_estimators):
            # Create tree with greedy splits
            model = DecisionTreeRegressor(max_depth=self.max_depth)
            # Bagging procedure
            idx_sample = np.random.choice(N, N)
            model.fit(X[idx_sample], y[idx_sample])
            self.models.append(model) 
開發者ID:ankonzoid,項目名稱:LearningX,代碼行數:19,代碼來源:BaggedTrees.py

示例3: fit

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeRegressor [as 別名]
def fit(self, X, y):
        """
        Method:
         1) Create n_estimator tree estimators with random splitting
            on d/3 max features
         2) For each estimator i, sample (X, y) randomly N times with replacement
            and train the estimator on this sampled dataset (X_i, y_i)
         3) Predict by taking the mean predictions of each estimator
        """
        self.models = []
        N, d = X.shape
        for i in range(self.n_estimators):
            # Create tree with random splitting on d/3 max features
            model = DecisionTreeRegressor(max_depth=self.max_depth,
                                          min_samples_split=self.min_samples_split,
                                          min_samples_leaf=self.min_samples_leaf,
                                          splitter="random",
                                          max_features=d/3)
            # Bagging procedure
            idx_sample = np.random.choice(N, N)  # random sampling of length N
            model.fit(X[idx_sample], y[idx_sample])  # fit on random sampling
            self.models.append(model) 
開發者ID:ankonzoid,項目名稱:LearningX,代碼行數:24,代碼來源:RandomForest.py

示例4: Train

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeRegressor [as 別名]
def Train(data, modelcount, censhu, yanzhgdata):
    model = AdaBoostRegressor(DecisionTreeRegressor(max_depth=censhu),
                              n_estimators=modelcount, learning_rate=0.8)

    model.fit(data[:, :-1], data[:, -1])
    # 給出訓練數據的預測值
    train_out = model.predict(data[:, :-1])
    # 計算MSE
    train_mse = mse(data[:, -1], train_out)

    # 給出驗證數據的預測值
    add_yan = model.predict(yanzhgdata[:, :-1])
    # 計算MSE
    add_mse = mse(yanzhgdata[:, -1], add_yan)
    print(train_mse, add_mse)
    return train_mse, add_mse

# 最終確定組合的函數 
開發者ID:Anfany,項目名稱:Machine-Learning-for-Beginner-by-Python3,代碼行數:20,代碼來源:AdaBoost_Regression.py

示例5: regression_cart

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeRegressor [as 別名]
def regression_cart(x,y):
    '''
        Estimate a CART regressor
    '''
    # create the regressor object
    cart = sk.DecisionTreeRegressor(min_samples_split=80,
        max_features="auto", random_state=66666, 
        max_depth=5)

    # estimate the model
    cart.fit(x,y)

    # return the object
    return cart

# the file name of the dataset 
開發者ID:drabastomek,項目名稱:practicalDataAnalysisCookbook,代碼行數:18,代碼來源:regression_cart.py

示例6: test_ransac_custom_base_estimator

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeRegressor [as 別名]
def test_ransac_custom_base_estimator():
    base_estimator = DecisionTreeRegressor()
    estimator = linear_model.RANSACRegressor(
        base_estimator=base_estimator,
        random_state=1)
    estimator.fit([[1], [2], [3]], [1, 2, 3])

    assembler = assemblers.RANSACModelAssembler(estimator)
    actual = assembler.assemble()

    expected = ast.IfExpr(
        ast.CompExpr(
            ast.FeatureRef(0),
            ast.NumVal(2.5),
            ast.CompOpType.LTE),
        ast.NumVal(2.0),
        ast.NumVal(3.0))

    assert utils.cmp_exprs(actual, expected) 
開發者ID:BayesWitnesses,項目名稱:m2cgen,代碼行數:21,代碼來源:test_meta.py

示例7: test_single_condition

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeRegressor [as 別名]
def test_single_condition():
    estimator = tree.DecisionTreeRegressor()

    estimator.fit([[1], [2]], [1, 2])

    assembler = assemblers.TreeModelAssembler(estimator)
    actual = assembler.assemble()

    expected = ast.IfExpr(
        ast.CompExpr(
            ast.FeatureRef(0),
            ast.NumVal(1.5),
            ast.CompOpType.LTE),
        ast.NumVal(1.0),
        ast.NumVal(2.0))

    assert utils.cmp_exprs(actual, expected) 
開發者ID:BayesWitnesses,項目名稱:m2cgen,代碼行數:19,代碼來源:test_tree.py

示例8: test_two_conditions

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeRegressor [as 別名]
def test_two_conditions():
    estimator = tree.DecisionTreeRegressor()

    estimator.fit([[1], [2], [3]], [1, 2, 3])

    assembler = assemblers.TreeModelAssembler(estimator)
    actual = assembler.assemble()

    expected = ast.IfExpr(
        ast.CompExpr(
            ast.FeatureRef(0),
            ast.NumVal(1.5),
            ast.CompOpType.LTE),
        ast.NumVal(1.0),
        ast.IfExpr(
            ast.CompExpr(
                ast.FeatureRef(0),
                ast.NumVal(2.5),
                ast.CompOpType.LTE),
            ast.NumVal(2.0),
            ast.NumVal(3.0)))

    assert utils.cmp_exprs(actual, expected) 
開發者ID:BayesWitnesses,項目名稱:m2cgen,代碼行數:25,代碼來源:test_tree.py

示例9: test_bootstrap_features

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeRegressor [as 別名]
def test_bootstrap_features():
    # Test that bootstrapping features may generate duplicate features.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(boston.data,
                                                        boston.target,
                                                        random_state=rng)

    ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(),
                                max_features=1.0,
                                bootstrap_features=False,
                                random_state=rng).fit(X_train, y_train)

    for features in ensemble.estimators_features_:
        assert_equal(boston.data.shape[1], np.unique(features).shape[0])

    ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(),
                                max_features=1.0,
                                bootstrap_features=True,
                                random_state=rng).fit(X_train, y_train)

    for features in ensemble.estimators_features_:
        assert_greater(boston.data.shape[1], np.unique(features).shape[0]) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:24,代碼來源:test_bagging.py

示例10: test_parallel_regression

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeRegressor [as 別名]
def test_parallel_regression():
    # Check parallel regression.
    rng = check_random_state(0)

    X_train, X_test, y_train, y_test = train_test_split(boston.data,
                                                        boston.target,
                                                        random_state=rng)

    ensemble = BaggingRegressor(DecisionTreeRegressor(),
                                n_jobs=3,
                                random_state=0).fit(X_train, y_train)

    ensemble.set_params(n_jobs=1)
    y1 = ensemble.predict(X_test)
    ensemble.set_params(n_jobs=2)
    y2 = ensemble.predict(X_test)
    assert_array_almost_equal(y1, y2)

    ensemble = BaggingRegressor(DecisionTreeRegressor(),
                                n_jobs=1,
                                random_state=0).fit(X_train, y_train)

    y3 = ensemble.predict(X_test)
    assert_array_almost_equal(y1, y3) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:26,代碼來源:test_bagging.py

示例11: test_gridsearch

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeRegressor [as 別名]
def test_gridsearch():
    # Check that base trees can be grid-searched.
    # AdaBoost classification
    boost = AdaBoostClassifier(base_estimator=DecisionTreeClassifier())
    parameters = {'n_estimators': (1, 2),
                  'base_estimator__max_depth': (1, 2),
                  'algorithm': ('SAMME', 'SAMME.R')}
    clf = GridSearchCV(boost, parameters)
    clf.fit(iris.data, iris.target)

    # AdaBoost regression
    boost = AdaBoostRegressor(base_estimator=DecisionTreeRegressor(),
                              random_state=0)
    parameters = {'n_estimators': (1, 2),
                  'base_estimator__max_depth': (1, 2)}
    clf = GridSearchCV(boost, parameters)
    clf.fit(boston.data, boston.target) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:19,代碼來源:test_weight_boosting.py

示例12: test_importances_gini_equal_mse

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeRegressor [as 別名]
def test_importances_gini_equal_mse():
    # Check that gini is equivalent to mse for binary output variable

    X, y = datasets.make_classification(n_samples=2000,
                                        n_features=10,
                                        n_informative=3,
                                        n_redundant=0,
                                        n_repeated=0,
                                        shuffle=False,
                                        random_state=0)

    # The gini index and the mean square error (variance) might differ due
    # to numerical instability. Since those instabilities mainly occurs at
    # high tree depth, we restrict this maximal depth.
    clf = DecisionTreeClassifier(criterion="gini", max_depth=5,
                                 random_state=0).fit(X, y)
    reg = DecisionTreeRegressor(criterion="mse", max_depth=5,
                                random_state=0).fit(X, y)

    assert_almost_equal(clf.feature_importances_, reg.feature_importances_)
    assert_array_equal(clf.tree_.feature, reg.tree_.feature)
    assert_array_equal(clf.tree_.children_left, reg.tree_.children_left)
    assert_array_equal(clf.tree_.children_right, reg.tree_.children_right)
    assert_array_equal(clf.tree_.n_node_samples, reg.tree_.n_node_samples) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:26,代碼來源:test_tree.py

示例13: test_imputation_pipeline_grid_search

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeRegressor [as 別名]
def test_imputation_pipeline_grid_search():
    # Test imputation within a pipeline + gridsearch.
    X = sparse_random_matrix(100, 100, density=0.10)
    missing_values = X.data[0]

    pipeline = Pipeline([('imputer',
                          SimpleImputer(missing_values=missing_values)),
                         ('tree',
                          tree.DecisionTreeRegressor(random_state=0))])

    parameters = {
        'imputer__strategy': ["mean", "median", "most_frequent"]
    }

    Y = sparse_random_matrix(100, 1, density=0.10).toarray()
    gs = GridSearchCV(pipeline, parameters)
    gs.fit(X, Y) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:19,代碼來源:test_impute.py

示例14: test_ovr_ovo_regressor

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeRegressor [as 別名]
def test_ovr_ovo_regressor():
    # test that ovr and ovo work on regressors which don't have a decision_
    # function
    ovr = OneVsRestClassifier(DecisionTreeRegressor())
    pred = ovr.fit(iris.data, iris.target).predict(iris.data)
    assert_equal(len(ovr.estimators_), n_classes)
    assert_array_equal(np.unique(pred), [0, 1, 2])
    # we are doing something sensible
    assert_greater(np.mean(pred == iris.target), .9)

    ovr = OneVsOneClassifier(DecisionTreeRegressor())
    pred = ovr.fit(iris.data, iris.target).predict(iris.data)
    assert_equal(len(ovr.estimators_), n_classes * (n_classes - 1) / 2)
    assert_array_equal(np.unique(pred), [0, 1, 2])
    # we are doing something sensible
    assert_greater(np.mean(pred == iris.target), .9) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:18,代碼來源:test_multiclass.py

示例15: generate_regression_data_and_models

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeRegressor [as 別名]
def generate_regression_data_and_models():
    df = pd.DataFrame()
    for _ in range(1000):
        a = np.random.normal(0, 1)
        b = np.random.normal(0, 3)
        c = np.random.normal(12, 4)
        target = a + b + c
        df = df.append({
            "A": a,
            "B": b,
            "C": c,
            "target": target
        }, ignore_index=True)

    reg1 = tree.DecisionTreeRegressor()
    reg2 = ensemble.RandomForestRegressor()
    column_names = ["A", "B", "C"]
    target_name = "target"
    X = df[column_names]
    reg1.fit(X, df[target_name])
    reg2.fit(X, df[target_name])
    return df, column_names, target_name, reg1, reg2 
開發者ID:EricSchles,項目名稱:drifter_ml,代碼行數:24,代碼來源:test_regression_tests.py


注:本文中的sklearn.tree.DecisionTreeRegressor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。