當前位置: 首頁>>代碼示例>>Python>>正文


Python tree.DecisionTreeClassifier方法代碼示例

本文整理匯總了Python中sklearn.tree.DecisionTreeClassifier方法的典型用法代碼示例。如果您正苦於以下問題:Python tree.DecisionTreeClassifier方法的具體用法?Python tree.DecisionTreeClassifier怎麽用?Python tree.DecisionTreeClassifier使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.tree的用法示例。


在下文中一共展示了tree.DecisionTreeClassifier方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: Train

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeClassifier [as 別名]
def Train(data, modelcount, censhu, yanzhgdata):
    model = AdaBoostClassifier(DecisionTreeClassifier(max_depth=censhu),
                               algorithm="SAMME",
                               n_estimators=modelcount, learning_rate=0.8)

    model.fit(data[:, :-1], data[:, -1])
    # 給出訓練數據的預測值
    train_out = model.predict(data[:, :-1])
    # 計算MSE
    train_mse = fmse(data[:, -1], train_out)[0]

    # 給出驗證數據的預測值
    add_yan = model.predict(yanzhgdata[:, :-1])
    # 計算f1度量
    add_mse = fmse(yanzhgdata[:, -1], add_yan)[0]
    print(train_mse, add_mse)
    return train_mse, add_mse

# 最終確定組合的函數 
開發者ID:Anfany,項目名稱:Machine-Learning-for-Beginner-by-Python3,代碼行數:21,代碼來源:AdaBoost_Classify.py

示例2: predict

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeClassifier [as 別名]
def predict(self, fit=None, features=None, probabilities=False):
        '''
        Predict the class labels (e.g., endmember types) based on an existing
        tree fit and new predictive features. Arguments:
            fit         The result of tree.DecisionTreeClassifier.fit(); uses
                        the last fit model if None.
            features    The new X array/ new predictive features to use;
                        should be (p x n), n samples with p features.
        '''
        if fit is None: fit = self.last_fit
        if features is None: features = self.x_features_array
        if probabilities:
            shp = self.y_raster.shape
            return fit.predict(features.T).T.reshape((self.n_labels, shp[1], shp[2]))

        return fit.predict(features.T).reshape(self.y_raster.shape) 
開發者ID:arthur-e,項目名稱:unmixing,代碼行數:18,代碼來源:sasma.py

示例3: recspre

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeClassifier [as 別名]
def recspre(estrs, predata, datadict, zhe):

    mo, ze = estrs.split('-')
    model = AdaBoostClassifier(DecisionTreeClassifier(max_depth=int(ze)),
                               algorithm="SAMME",
                               n_estimators=int(mo), learning_rate=0.8)

    model.fit(datadict[zhe]['train'][:, :-1], datadict[zhe]['train'][:, -1])

    # 預測
    yucede = model.predict(predata[:, :-1])
    # 計算混淆矩陣

    print(ConfuseMatrix(predata[:, -1], yucede))

    return fmse(predata[:, -1], yucede)

# 主函數 
開發者ID:Anfany,項目名稱:Machine-Learning-for-Beginner-by-Python3,代碼行數:20,代碼來源:AdaBoost_Classify.py

示例4: __init__

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeClassifier [as 別名]
def __init__(self,
                 base_estimator=DecisionTreeClassifier(),
                 window_size=250,
                 slope=0.5,
                 crossing_point=10,
                 n_estimators=15,
                 pruning=None):
        super().__init__()
        self.ensemble = []
        self.ensemble_weights = []
        self.bkts = []
        self.wkts = []
        self.buffer = []
        self.window_size = window_size
        self.slope = slope
        self.crossing_point = crossing_point
        self.n_estimators = n_estimators
        self.pruning = pruning
        self.X_batch = []
        self.y_batch = []
        self.instance_weights = []
        self.base_estimator = cp.deepcopy(base_estimator)
        self.classes = None 
開發者ID:scikit-multiflow,項目名稱:scikit-multiflow,代碼行數:25,代碼來源:learn_nse.py

示例5: __init__

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeClassifier [as 別名]
def __init__(self, base_estimator=DecisionTreeClassifier(),
                 error_threshold=0.5,
                 n_estimators=30,
                 n_ensembles=10,
                 window_size=100,
                 random_state=None):
        super().__init__()
        self.base_estimator = base_estimator
        self.n_estimators = n_estimators
        self.ensembles = []
        self.ensemble_weights = []
        self.classes = None
        self.n_ensembles = n_ensembles
        self.random = check_random_state(random_state)
        self.random_state = random_state
        self.error_threshold = error_threshold
        self.X_batch = []
        self.y_batch = []
        self.window_size = window_size 
開發者ID:scikit-multiflow,項目名稱:scikit-multiflow,代碼行數:21,代碼來源:learn_pp.py

示例6: __call__

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeClassifier [as 別名]
def __call__(self, estimator):
        fitted_estimator = estimator.fit(self.X_train, self.y_train)

        if isinstance(estimator, (LinearClassifierMixin, SVC, NuSVC,
                                  LightBaseClassifier)):
            y_pred = estimator.decision_function(self.X_test)
        elif isinstance(estimator, DecisionTreeClassifier):
            y_pred = estimator.predict_proba(self.X_test.astype(np.float32))
        elif isinstance(
                estimator,
                (ForestClassifier, XGBClassifier, LGBMClassifier)):
            y_pred = estimator.predict_proba(self.X_test)
        else:
            y_pred = estimator.predict(self.X_test)

        return self.X_test, y_pred, fitted_estimator 
開發者ID:BayesWitnesses,項目名稱:m2cgen,代碼行數:18,代碼來源:utils.py

示例7: test_classification

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeClassifier [as 別名]
def test_classification():
    # Check classification for various parameter settings.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(iris.data,
                                                        iris.target,
                                                        random_state=rng)
    grid = ParameterGrid({"max_samples": [0.5, 1.0],
                          "max_features": [1, 2, 4],
                          "bootstrap": [True, False],
                          "bootstrap_features": [True, False]})

    for base_estimator in [None,
                           DummyClassifier(),
                           Perceptron(tol=1e-3),
                           DecisionTreeClassifier(),
                           KNeighborsClassifier(),
                           SVC(gamma="scale")]:
        for params in grid:
            BaggingClassifier(base_estimator=base_estimator,
                              random_state=rng,
                              **params).fit(X_train, y_train).predict(X_test) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:23,代碼來源:test_bagging.py

示例8: test_gridsearch

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeClassifier [as 別名]
def test_gridsearch():
    # Check that base trees can be grid-searched.
    # AdaBoost classification
    boost = AdaBoostClassifier(base_estimator=DecisionTreeClassifier())
    parameters = {'n_estimators': (1, 2),
                  'base_estimator__max_depth': (1, 2),
                  'algorithm': ('SAMME', 'SAMME.R')}
    clf = GridSearchCV(boost, parameters)
    clf.fit(iris.data, iris.target)

    # AdaBoost regression
    boost = AdaBoostRegressor(base_estimator=DecisionTreeRegressor(),
                              random_state=0)
    parameters = {'n_estimators': (1, 2),
                  'base_estimator__max_depth': (1, 2)}
    clf = GridSearchCV(boost, parameters)
    clf.fit(boston.data, boston.target) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:19,代碼來源:test_weight_boosting.py

示例9: test_plot_tree

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeClassifier [as 別名]
def test_plot_tree(pyplot):
    # mostly smoke tests
    # Check correctness of export_graphviz
    clf = DecisionTreeClassifier(max_depth=3,
                                 min_samples_split=2,
                                 criterion="gini",
                                 random_state=2)
    clf.fit(X, y)

    # Test export code
    feature_names = ['first feat', 'sepal_width']
    nodes = plot_tree(clf, feature_names=feature_names)
    assert len(nodes) == 3
    assert nodes[0].get_text() == ("first feat <= 0.0\nentropy = 0.5\n"
                                   "samples = 6\nvalue = [3, 3]")
    assert nodes[1].get_text() == "entropy = 0.0\nsamples = 3\nvalue = [3, 0]"
    assert nodes[2].get_text() == "entropy = 0.0\nsamples = 3\nvalue = [0, 3]" 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:19,代碼來源:test_export.py

示例10: test_probability

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeClassifier [as 別名]
def test_probability():
    # Predict probabilities using DecisionTreeClassifier.

    for name, Tree in CLF_TREES.items():
        clf = Tree(max_depth=1, max_features=1, random_state=42)
        clf.fit(iris.data, iris.target)

        prob_predict = clf.predict_proba(iris.data)
        assert_array_almost_equal(np.sum(prob_predict, 1),
                                  np.ones(iris.data.shape[0]),
                                  err_msg="Failed with {0}".format(name))
        assert_array_equal(np.argmax(prob_predict, 1),
                           clf.predict(iris.data),
                           err_msg="Failed with {0}".format(name))
        assert_almost_equal(clf.predict_proba(iris.data),
                            np.exp(clf.predict_log_proba(iris.data)), 8,
                            err_msg="Failed with {0}".format(name)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:19,代碼來源:test_tree.py

示例11: test_importances_gini_equal_mse

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeClassifier [as 別名]
def test_importances_gini_equal_mse():
    # Check that gini is equivalent to mse for binary output variable

    X, y = datasets.make_classification(n_samples=2000,
                                        n_features=10,
                                        n_informative=3,
                                        n_redundant=0,
                                        n_repeated=0,
                                        shuffle=False,
                                        random_state=0)

    # The gini index and the mean square error (variance) might differ due
    # to numerical instability. Since those instabilities mainly occurs at
    # high tree depth, we restrict this maximal depth.
    clf = DecisionTreeClassifier(criterion="gini", max_depth=5,
                                 random_state=0).fit(X, y)
    reg = DecisionTreeRegressor(criterion="mse", max_depth=5,
                                random_state=0).fit(X, y)

    assert_almost_equal(clf.feature_importances_, reg.feature_importances_)
    assert_array_equal(clf.tree_.feature, reg.tree_.feature)
    assert_array_equal(clf.tree_.children_left, reg.tree_.children_left)
    assert_array_equal(clf.tree_.children_right, reg.tree_.children_right)
    assert_array_equal(clf.tree_.n_node_samples, reg.tree_.n_node_samples) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:26,代碼來源:test_tree.py

示例12: test_sample_weight_invalid

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeClassifier [as 別名]
def test_sample_weight_invalid():
    # Check sample weighting raises errors.
    X = np.arange(100)[:, np.newaxis]
    y = np.ones(100)
    y[:50] = 0.0

    clf = DecisionTreeClassifier(random_state=0)

    sample_weight = np.random.rand(100, 1)
    assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight)

    sample_weight = np.array(0)
    assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight)

    sample_weight = np.ones(101)
    assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight)

    sample_weight = np.ones(99)
    assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:21,代碼來源:test_tree.py

示例13: test_huge_allocations

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeClassifier [as 別名]
def test_huge_allocations():
    n_bits = 8 * struct.calcsize("P")

    X = np.random.randn(10, 2)
    y = np.random.randint(0, 2, 10)

    # Sanity check: we cannot request more memory than the size of the address
    # space. Currently raises OverflowError.
    huge = 2 ** (n_bits + 1)
    clf = DecisionTreeClassifier(splitter='best', max_leaf_nodes=huge)
    assert_raises(Exception, clf.fit, X, y)

    # Non-regression test: MemoryError used to be dropped by Cython
    # because of missing "except *".
    huge = 2 ** (n_bits - 1) - 1
    clf = DecisionTreeClassifier(splitter='best', max_leaf_nodes=huge)
    assert_raises(MemoryError, clf.fit, X, y) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:19,代碼來源:test_tree.py

示例14: test_set_params_passes_all_parameters

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeClassifier [as 別名]
def test_set_params_passes_all_parameters():
    # Make sure all parameters are passed together to set_params
    # of nested estimator. Regression test for #9944

    class TestDecisionTree(DecisionTreeClassifier):
        def set_params(self, **kwargs):
            super().set_params(**kwargs)
            # expected_kwargs is in test scope
            assert kwargs == expected_kwargs
            return self

    expected_kwargs = {'max_depth': 5, 'min_samples_leaf': 2}
    for est in [Pipeline([('estimator', TestDecisionTree())]),
                GridSearchCV(TestDecisionTree(), {})]:
        est.set_params(estimator__max_depth=5,
                       estimator__min_samples_leaf=2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:18,代碼來源:test_base.py

示例15: test_score_sample_weight

# 需要導入模塊: from sklearn import tree [as 別名]
# 或者: from sklearn.tree import DecisionTreeClassifier [as 別名]
def test_score_sample_weight():

    rng = np.random.RandomState(0)

    # test both ClassifierMixin and RegressorMixin
    estimators = [DecisionTreeClassifier(max_depth=2),
                  DecisionTreeRegressor(max_depth=2)]
    sets = [datasets.load_iris(),
            datasets.load_boston()]

    for est, ds in zip(estimators, sets):
        est.fit(ds.data, ds.target)
        # generate random sample weights
        sample_weight = rng.randint(1, 10, size=len(ds.target))
        # check that the score with and without sample weights are different
        assert_not_equal(est.score(ds.data, ds.target),
                         est.score(ds.data, ds.target,
                                   sample_weight=sample_weight),
                         msg="Unweighted and weighted scores "
                             "are unexpectedly equal") 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:22,代碼來源:test_base.py


注:本文中的sklearn.tree.DecisionTreeClassifier方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。