本文整理匯總了Python中sklearn.svm方法的典型用法代碼示例。如果您正苦於以下問題:Python sklearn.svm方法的具體用法?Python sklearn.svm怎麽用?Python sklearn.svm使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn
的用法示例。
在下文中一共展示了sklearn.svm方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: fit_new_classifier
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import svm [as 別名]
def fit_new_classifier(problem, train_idx):
"""
References:
http://leon.bottou.org/research/stochastic
http://blog.explainmydata.com/2012/06/ntrain-24853-ntest-25147-ncorrupt.html
http://scikit-learn.org/stable/modules/svm.html#svm-classification
http://scikit-learn.org/stable/modules/grid_search.html
"""
print('[problem] train classifier on %d data points' % (len(train_idx)))
data = problem.ds.data
target = problem.ds.target
x_train = data.take(train_idx, axis=0)
y_train = target.take(train_idx, axis=0)
clf = sklearn.svm.SVC(kernel=str('linear'), C=.17, class_weight='balanced',
decision_function_shape='ovr')
# C, penalty, loss
#param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5],
# 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }
#param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5],
# 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }
#clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)
#clf = clf.fit(X_train_pca, y_train)
clf.fit(x_train, y_train)
return clf
示例2: _create_classifier
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import svm [as 別名]
def _create_classifier(self, num_threads, y):
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
C = self.component_config["C"]
kernels = self.component_config["kernels"]
gamma = self.component_config["gamma"]
# dirty str fix because sklearn is expecting
# str not instance of basestr...
tuned_parameters = [{"C": C,
"gamma": gamma,
"kernel": [str(k) for k in kernels]}]
# aim for 5 examples in each fold
cv_splits = self._num_cv_splits(y)
return GridSearchCV(SVC(C=1,
probability=True,
class_weight='balanced'),
param_grid=tuned_parameters,
n_jobs=num_threads,
cv=cv_splits,
scoring=self.component_config['scoring_function'],
verbose=1)
示例3: test_monkey_patching
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import svm [as 別名]
def test_monkey_patching(self):
_tokens = daal4py.sklearn.sklearn_patch_names()
self.assertTrue(isinstance(_tokens, list) and len(_tokens) > 0)
for t in _tokens:
daal4py.sklearn.unpatch_sklearn(t)
for t in _tokens:
daal4py.sklearn.patch_sklearn(t)
import sklearn
for a in [(sklearn.decomposition, 'PCA'),
(sklearn.linear_model, 'Ridge'),
(sklearn.linear_model, 'LinearRegression'),
(sklearn.cluster, 'KMeans'),
(sklearn.svm, 'SVC'),]:
class_module = getattr(a[0], a[1]).__module__
self.assertTrue(class_module.startswith('daal4py'))
示例4: _create_classifier
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import svm [as 別名]
def _create_classifier(self, num_threads, y):
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
C = self.component_config["C"]
kernels = self.component_config["kernels"]
# dirty str fix because sklearn is expecting
# str not instance of basestr...
tuned_parameters = [{"C": C,
"kernel": [str(k) for k in kernels]}]
# aim for 5 examples in each fold
cv_splits = self._num_cv_splits(y)
return GridSearchCV(SVC(C=1,
probability=True,
class_weight='balanced'),
param_grid=tuned_parameters,
n_jobs=num_threads,
cv=cv_splits,
scoring='f1_weighted',
verbose=1)
示例5: arg_parse
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import svm [as 別名]
def arg_parse():
parser = argparse.ArgumentParser()
parser.add_argument('-g', '--gpu', type=str, default='0', help='Use which gpu?')
parser.add_argument('-d', '--dataset', type=str, help='Train on which dataset')
parser.add_argument('-b','--bn',type=bool,default=False,help='whether to use BN layer')
parser.add_argument('--model_path',type=str,help='Path to saved tensorflow CAE model')
parser.add_argument('--graph_path',type=str,help='Path to saved object detection frozen graph model')
parser.add_argument('--svm_model',type=str,help='Path to saved svm model')
parser.add_argument('--dataset_folder',type=str,help='Dataset Fodlder Path')
parser.add_argument('-c','--class_add',type=bool,default=False,help='Whether to add class one-hot embedding to the featrue')
parser.add_argument('-n','--norm',type=int,default=0,help='Whether to use Normalization to the Feature and the normalization level')
parser.add_argument('--test_CAE',type=bool,default=False,help='Whether to test CAE')
parser.add_argument('--matlab',type=bool,default=False,help='Whether to use matlab weights and biases to test')
args = parser.parse_args()
return args
示例6: fit_new_linear_svm
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import svm [as 別名]
def fit_new_linear_svm(problem, train_idx):
print('[problem] train classifier on %d data points' % (len(train_idx)))
data = problem.ds.data
target = problem.ds.target
x_train = data.take(train_idx, axis=0)
y_train = target.take(train_idx, axis=0)
clf = sklearn.svm.SVC(kernel=str('linear'), C=.17, class_weight='balanced',
decision_function_shape='ovr')
clf.fit(x_train, y_train)
示例7: getModelNode
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import svm [as 別名]
def getModelNode(classifier):
if classifier.startswith("svm"):
node = "poolingLayer"
else:
node = []
return(node)
示例8: runClassifier
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import svm [as 別名]
def runClassifier(classifier, dnnOutput, imgDict = [], lutLabel2Id = [], svmPath = [], svm_boL2Normalize = []):
# Run classifier on all known images, if not otherwise specified
if imgDict == []:
imgDict = {}
for label in list(dnnOutput.keys()):
imgDict[label] = list(dnnOutput[label].keys())
# Compute SVM classification scores
if classifier.startswith('svm'):
learner = readPickle(svmPath)
feats, gtLabels, imgFilenames = getSvmInput(imgDict, dnnOutput, svm_boL2Normalize, lutLabel2Id)
print("Evaluate SVM...")
scoresMatrix = learner.decision_function(feats)
# If binary classification problem then manually create 2nd column
# Note: scoresMatrix is of size nrImages x nrClasses
if len(scoresMatrix.shape) == 1:
scoresMatrix = [[-scoresMatrix[i],scoresMatrix[i]] for i in range(len(scoresMatrix))]
scoresMatrix = np.array(scoresMatrix)
# Get DNN classification scores
else:
gtLabels = []
scoresMatrix = []
imgFilenames = []
for label in list(imgDict.keys()):
for imgFilename in imgDict[label]:
scores = dnnOutput[label][imgFilename]
if lutLabel2Id == []:
gtLabels.append(label)
else:
gtLabels.append(int(lutLabel2Id[label]))
scoresMatrix.append(scores)
imgFilenames.append(imgFilename)
scoresMatrix = np.vstack(scoresMatrix)
return scoresMatrix, imgFilenames, gtLabels
開發者ID:Azure-Samples,項目名稱:MachineLearningSamples-ImageClassificationUsingCntk,代碼行數:38,代碼來源:helpers.py
示例9: __init__
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import svm [as 別名]
def __init__(self, path):
self.train_data = []
self.test_data = []
self.train_labels = []
self.test_labels = []
self.classification = []
self.svm_classifier = svm.SVC(gamma=0.001, C=50,decision_function_shape='ovr',kernel='rbf')
self.corpus_path = path
self.corpus = {}
self.vocab = []
示例10: start_program
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import svm [as 別名]
def start_program():
Total_correct = 0
Total_labelled = 0
clf = svm.SVC(gamma=0.001, C=50, kernel='rbf')
train_features = []
train_labels = []
test_features = []
test_labels = []
for season in range(1,5):
for episode in range(1,Season_Episode_Mapping[season]-4):
features, labels = episode2feature(season,episode)
train_features.extend(features)
train_labels.extend(labels)
#print(all_features)
for season in range(5,8):
for episode in range(Season_Episode_Mapping[season]-4,Season_Episode_Mapping[season]+1):
features, labels = episode2feature(season,episode)
test_features.extend(features)
test_labels.extend(labels)
#print(train_features)
clf.fit(train_features,train_labels)
result = clf.predict(test_features)
txt = "\n Speaker\tPrecision\tRecall\t\tF1\n"
for i in range(1,7):
precision, recall,f1_score,correct,total = get_stats(result, train_labels,i)
Total_correct += correct
Total_labelled += total
txt += speaker_rev_enum[i]+"\t\t"+ str(format(precision,'.2f'))+"\t\t"+str(format(recall,'.2f'))+"\t\t"+str(format(f1_score,'.2f'))+"\n"
with open("output.txt","w") as fh:
fh.write(txt)
print("Accuracy of the system is : "+str(Total_correct/Total_labelled))
示例11: init_classifier_impl
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import svm [as 別名]
def init_classifier_impl(field_code: str, init_script: str):
if init_script is not None:
init_script = init_script.strip()
if not init_script:
from sklearn import tree as sklearn_tree
return sklearn_tree.DecisionTreeClassifier()
from sklearn import tree as sklearn_tree
from sklearn import neural_network as sklearn_neural_network
from sklearn import neighbors as sklearn_neighbors
from sklearn import svm as sklearn_svm
from sklearn import gaussian_process as sklearn_gaussian_process
from sklearn.gaussian_process import kernels as sklearn_gaussian_process_kernels
from sklearn import ensemble as sklearn_ensemble
from sklearn import naive_bayes as sklearn_naive_bayes
from sklearn import discriminant_analysis as sklearn_discriminant_analysis
from sklearn import linear_model as sklearn_linear_model
eval_locals = {
'sklearn_linear_model': sklearn_linear_model,
'sklearn_tree': sklearn_tree,
'sklearn_neural_network': sklearn_neural_network,
'sklearn_neighbors': sklearn_neighbors,
'sklearn_svm': sklearn_svm,
'sklearn_gaussian_process': sklearn_gaussian_process,
'sklearn_gaussian_process_kernels': sklearn_gaussian_process_kernels,
'sklearn_ensemble': sklearn_ensemble,
'sklearn_naive_bayes': sklearn_naive_bayes,
'sklearn_discriminant_analysis': sklearn_discriminant_analysis
}
return eval_script('classifier init script of field {0}'.format(field_code), init_script, eval_locals)
示例12: svm_example
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import svm [as 別名]
def svm_example(n_samples = 10000, n_features = 100):
from sklearn.svm import SVR
from sklearn.datasets import make_regression
X,Y = make_regression(n_samples, n_features)
m = SVR()
m.fit(X,Y)
示例13: svc_example
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import svm [as 別名]
def svc_example(n_samples = 10000, n_features = 4):
from sklearn.svm import LinearSVC
from sklearn.preprocessing import PolynomialFeatures
from sklearn.datasets import make_classification
X,Y = make_classification(n_samples, n_features)
#pp = PolynomialFeatures(degree=3)
#X = pp.fit_transform(X)
m = LinearSVC()
m.fit(X,Y)
示例14: run
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import svm [as 別名]
def run(self):
df_train = self.input().load()
if self.model=='ols':
model = sklearn.linear_model.LogisticRegression()
elif self.model=='svm':
model = sklearn.svm.SVC()
else:
raise ValueError('invalid model selection')
model.fit(df_train.iloc[:,:-1], df_train['y'])
self.save(model)
# Check task dependencies and their execution status
示例15: svm
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import svm [as 別名]
def svm(K1, K2, y1, y2, C, c):
n_val, n_train = K2.shape
clf = SVC(kernel = "precomputed", C = C, cache_size = 100000)
clf.fit(K1, y1)
z = clf.predict(K2)
return 1.0 * np.sum(z == y2) / n_val