當前位置: 首頁>>代碼示例>>Python>>正文


Python svm.NuSVC方法代碼示例

本文整理匯總了Python中sklearn.svm.NuSVC方法的典型用法代碼示例。如果您正苦於以下問題:Python svm.NuSVC方法的具體用法?Python svm.NuSVC怎麽用?Python svm.NuSVC使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.svm的用法示例。


在下文中一共展示了svm.NuSVC方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __call__

# 需要導入模塊: from sklearn import svm [as 別名]
# 或者: from sklearn.svm import NuSVC [as 別名]
def __call__(self, estimator):
        fitted_estimator = estimator.fit(self.X_train, self.y_train)

        if isinstance(estimator, (LinearClassifierMixin, SVC, NuSVC,
                                  LightBaseClassifier)):
            y_pred = estimator.decision_function(self.X_test)
        elif isinstance(estimator, DecisionTreeClassifier):
            y_pred = estimator.predict_proba(self.X_test.astype(np.float32))
        elif isinstance(
                estimator,
                (ForestClassifier, XGBClassifier, LGBMClassifier)):
            y_pred = estimator.predict_proba(self.X_test)
        else:
            y_pred = estimator.predict(self.X_test)

        return self.X_test, y_pred, fitted_estimator 
開發者ID:BayesWitnesses,項目名稱:m2cgen,代碼行數:18,代碼來源:utils.py

示例2: test_probability

# 需要導入模塊: from sklearn import svm [as 別名]
# 或者: from sklearn.svm import NuSVC [as 別名]
def test_probability():
    # Predict probabilities using SVC
    # This uses cross validation, so we use a slightly bigger testing set.

    for clf in (svm.SVC(gamma='scale', probability=True, random_state=0,
                C=1.0), svm.NuSVC(gamma='scale', probability=True,
                                  random_state=0)):
        clf.fit(iris.data, iris.target)

        prob_predict = clf.predict_proba(iris.data)
        assert_array_almost_equal(
            np.sum(prob_predict, 1), np.ones(iris.data.shape[0]))
        assert np.mean(np.argmax(prob_predict, 1)
                       == clf.predict(iris.data)) > 0.9

        assert_almost_equal(clf.predict_proba(iris.data),
                            np.exp(clf.predict_log_proba(iris.data)), 8) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:19,代碼來源:test_svm.py

示例3: test

# 需要導入模塊: from sklearn import svm [as 別名]
# 或者: from sklearn.svm import NuSVC [as 別名]
def test(X_new):
    """
    3 test cases to be passed
    an array containing the sepal length (cm), sepal width (cm), petal length (cm),
    petal width (cm) based on which  the target name will be predicted
    >>> test([1,2,1,4])
    'virginica'
    >>> test([5, 2, 4, 1])
    'versicolor'
    >>> test([6,3,4,1])
    'versicolor'
    """
    iris = load_iris()
    # splitting the dataset to test and train
    train_x, test_x, train_y, test_y = train_test_split(
        iris["data"], iris["target"], random_state=4
    )
    # any of the 3 types of SVM can be used
    # current_model=SVC(train_x, train_y)
    # current_model=NuSVC(train_x, train_y)
    current_model = Linearsvc(train_x, train_y)
    prediction = current_model.predict([X_new])
    return iris["target_names"][prediction][0] 
開發者ID:TheAlgorithms,項目名稱:Python,代碼行數:25,代碼來源:support_vector_machines.py

示例4: test_probability

# 需要導入模塊: from sklearn import svm [as 別名]
# 或者: from sklearn.svm import NuSVC [as 別名]
def test_probability():
    # Predict probabilities using SVC
    # This uses cross validation, so we use a slightly bigger testing set.

    for clf in (svm.SVC(probability=True, random_state=0, C=1.0),
                svm.NuSVC(probability=True, random_state=0)):
        clf.fit(iris.data, iris.target)

        prob_predict = clf.predict_proba(iris.data)
        assert_array_almost_equal(
            np.sum(prob_predict, 1), np.ones(iris.data.shape[0]))
        assert_true(np.mean(np.argmax(prob_predict, 1)
                            == clf.predict(iris.data)) > 0.9)

        assert_almost_equal(clf.predict_proba(iris.data),
                            np.exp(clf.predict_log_proba(iris.data)), 8) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:18,代碼來源:test_svm.py

示例5: test_error

# 需要導入模塊: from sklearn import svm [as 別名]
# 或者: from sklearn.svm import NuSVC [as 別名]
def test_error():
    # Test that it gives proper exception on deficient input
    # impossible value of C
    assert_raises(ValueError, svm.SVC(gamma='scale', C=-1).fit, X, Y)

    # impossible value of nu
    clf = svm.NuSVC(gamma='scale', nu=0.0)
    assert_raises(ValueError, clf.fit, X_sp, Y)

    Y2 = Y[:-1]  # wrong dimensions for labels
    assert_raises(ValueError, clf.fit, X_sp, Y2)

    clf = svm.SVC(gamma="scale")
    clf.fit(X_sp, Y)
    assert_array_equal(clf.predict(T), true_result) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:17,代碼來源:test_sparse.py

示例6: test_immutable_coef_property

# 需要導入模塊: from sklearn import svm [as 別名]
# 或者: from sklearn.svm import NuSVC [as 別名]
def test_immutable_coef_property():
    # Check that primal coef modification are not silently ignored
    svms = [
        svm.SVC(kernel='linear').fit(iris.data, iris.target),
        svm.NuSVC(kernel='linear').fit(iris.data, iris.target),
        svm.SVR(kernel='linear').fit(iris.data, iris.target),
        svm.NuSVR(kernel='linear').fit(iris.data, iris.target),
        svm.OneClassSVM(kernel='linear').fit(iris.data),
    ]
    for clf in svms:
        assert_raises(AttributeError, clf.__setattr__, 'coef_', np.arange(3))
        assert_raises((RuntimeError, ValueError),
                      clf.coef_.__setitem__, (0, 0), 0) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:15,代碼來源:test_svm.py

示例7: test_decision_function_shape_two_class

# 需要導入模塊: from sklearn import svm [as 別名]
# 或者: from sklearn.svm import NuSVC [as 別名]
def test_decision_function_shape_two_class():
    for n_classes in [2, 3]:
        X, y = make_blobs(centers=n_classes, random_state=0)
        for estimator in [svm.SVC, svm.NuSVC]:
            clf = OneVsRestClassifier(estimator(gamma='scale',
                decision_function_shape="ovr")).fit(X, y)
            assert_equal(len(clf.predict(X)), len(y)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:9,代碼來源:test_svm.py

示例8: NuSVC

# 需要導入模塊: from sklearn import svm [as 別名]
# 或者: from sklearn.svm import NuSVC [as 別名]
def NuSVC(train_x, train_y):
    svc_NuSVC = svm.NuSVC()
    svc_NuSVC.fit(train_x, train_y)
    return svc_NuSVC 
開發者ID:TheAlgorithms,項目名稱:Python,代碼行數:6,代碼來源:support_vector_machines.py

示例9: convert

# 需要導入模塊: from sklearn import svm [as 別名]
# 或者: from sklearn.svm import NuSVC [as 別名]
def convert(model, feature_names, target):
    """Convert a Nu-Support Vector Classification (NuSVC) model to the protobuf spec.
    Parameters
    ----------
    model: NuSVC
        A trained NuSVC encoder model.

    feature_names: [str], optional (default=None)
        Name of the input columns.

    target: str, optional (default=None)
        Name of the output column.

    Returns
    -------
    model_spec: An object of type Model_pb.
        Protobuf representation of the model
    """

    if not (_HAS_SKLEARN):
        raise RuntimeError(
            "scikit-learn not found. scikit-learn conversion API is disabled."
        )

    _sklearn_util.check_expected_type(model, _NuSVC)
    return _SVC.convert(model, feature_names, target) 
開發者ID:apple,項目名稱:coremltools,代碼行數:28,代碼來源:_NuSVC.py

示例10: test_conversion_bad_inputs

# 需要導入模塊: from sklearn import svm [as 別名]
# 或者: from sklearn.svm import NuSVC [as 別名]
def test_conversion_bad_inputs(self):
        from sklearn.preprocessing import OneHotEncoder

        # Error on converting an untrained model
        with self.assertRaises(TypeError):
            model = NuSVC()
            spec = scikit_converter.convert(model, "data", "out")

        # Check the expected class during conversion
        with self.assertRaises(TypeError):
            model = OneHotEncoder()
            spec = scikit_converter.convert(model, "data", "out") 
開發者ID:apple,項目名稱:coremltools,代碼行數:14,代碼來源:test_NuSVC.py

示例11: create_classifiers

# 需要導入模塊: from sklearn import svm [as 別名]
# 或者: from sklearn.svm import NuSVC [as 別名]
def create_classifiers(nb_workers=-1):
    """ create all classifiers with default parameters

    :param int nb_workers: number of parallel if possible
    :return dict: {str: clf}

    >>> classifs = create_classifiers()
    >>> classifs  # doctest: +ELLIPSIS
    {...}
    >>> sum([isinstance(create_clf_param_search_grid(k), dict)
    ...      for k in classifs.keys()])
    7
    >>> sum([isinstance(create_clf_param_search_distrib(k), dict)
    ...      for k in classifs.keys()])
    7
    """
    clfs = {
        'RandForest': ensemble.RandomForestClassifier(n_estimators=20,
                                                      # oob_score=True,
                                                      min_samples_leaf=2,
                                                      min_samples_split=3,
                                                      n_jobs=nb_workers),
        'GradBoost': ensemble.GradientBoostingClassifier(subsample=0.25,
                                                         warm_start=False,
                                                         max_depth=6,
                                                         min_samples_leaf=6,
                                                         n_estimators=200,
                                                         min_samples_split=7),
        'LogistRegr': linear_model.LogisticRegression(solver='sag',
                                                      n_jobs=nb_workers),
        'KNN': neighbors.KNeighborsClassifier(n_jobs=nb_workers),
        'SVM': svm.SVC(kernel='rbf', probability=True,
                       tol=2e-3, max_iter=5000),
        'DecTree': tree.DecisionTreeClassifier(),
        # 'RBM': create_pipeline_neuron_net(),
        'AdaBoost': ensemble.AdaBoostClassifier(n_estimators=5),
        # 'NuSVM-rbf': svm.NuSVC(kernel='rbf', probability=True),
    }
    return clfs 
開發者ID:Borda,項目名稱:pyImSegm,代碼行數:41,代碼來源:classification.py

示例12: _parse_sklearn_classifier

# 需要導入模塊: from sklearn import svm [as 別名]
# 或者: from sklearn.svm import NuSVC [as 別名]
def _parse_sklearn_classifier(scope, model, inputs, custom_parsers=None):
    probability_tensor = _parse_sklearn_simple_model(
            scope, model, inputs, custom_parsers=custom_parsers)
    if model.__class__ in [NuSVC, SVC] and not model.probability:
        return probability_tensor
    options = scope.get_options(model, dict(zipmap=True))
    if not options['zipmap']:
        return probability_tensor
    this_operator = scope.declare_local_operator('SklearnZipMap')
    this_operator.inputs = probability_tensor
    label_type = Int64TensorType([None])
    classes = get_label_classes(scope, model)

    if (isinstance(model.classes_, list) and
            isinstance(model.classes_[0], np.ndarray)):
        # multi-label problem
        pass
    elif np.issubdtype(classes.dtype, np.floating):
        classes = np.array(list(map(lambda x: int(x), classes)))
        if set(map(lambda x: float(x), classes)) != set(model.classes_):
            raise RuntimeError("skl2onnx implicitly converts float class "
                               "labels into integers but at least one label "
                               "is not an integer. Class labels should "
                               "be integers or strings.")
        this_operator.classlabels_int64s = classes
    elif np.issubdtype(classes.dtype, np.signedinteger):
        this_operator.classlabels_int64s = classes
    elif np.issubdtype(classes.dtype, np.unsignedinteger):
        this_operator.classlabels_int64s = classes
    else:
        classes = np.array([s.encode('utf-8') for s in classes])
        this_operator.classlabels_strings = classes
        label_type = StringTensorType([None])

    output_label = scope.declare_local_variable('output_label', label_type)
    output_probability = scope.declare_local_variable(
        'output_probability',
        SequenceType(DictionaryType(label_type, scope.tensor_type())))
    this_operator.outputs.append(output_label)
    this_operator.outputs.append(output_probability)
    return this_operator.outputs 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:43,代碼來源:_parse.py

示例13: test_convert_nusvc_binary_pfalse

# 需要導入模塊: from sklearn import svm [as 別名]
# 或者: from sklearn.svm import NuSVC [as 別名]
def test_convert_nusvc_binary_pfalse(self):
        model, X = self._fit_binary_classification(
            NuSVC(probability=False, decision_function_shape='ovo'))
        model_onnx = convert_sklearn(
            model, "SVC", [("input", FloatTensorType([None, X.shape[1]]))])
        nodes = model_onnx.graph.node
        self.assertIsNotNone(nodes)
        svc_node = nodes[0]
        self._check_attributes(
            svc_node,
            {
                "coefficients": None,
                "kernel_params": None,
                "kernel_type": "RBF",
                "post_transform": None,
                "rho": None,
                "support_vectors": None,
                "vectors_per_class": None,
            },
        )
        dump_data_and_model(
            X,
            model,
            model_onnx,
            basename="SklearnBinNuSVCPF-NoProbOpp",
            allow_failure="StrictVersion(onnxruntime.__version__)"
                          " < StrictVersion('0.5.0')"
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:30,代碼來源:test_sklearn_svm_converters.py

示例14: test_convert_nusvc_binary_ptrue

# 需要導入模塊: from sklearn import svm [as 別名]
# 或者: from sklearn.svm import NuSVC [as 別名]
def test_convert_nusvc_binary_ptrue(self):
        model, X = self._fit_binary_classification(NuSVC(probability=True))
        model_onnx = convert_sklearn(
            model, "SVC", [("input", FloatTensorType([None, X.shape[1]]))])
        nodes = model_onnx.graph.node
        self.assertIsNotNone(nodes)
        svc_node = nodes[0]
        self._check_attributes(
            svc_node,
            {
                "coefficients": None,
                "kernel_params": None,
                "kernel_type": "RBF",
                "post_transform": None,
                "rho": None,
                "support_vectors": None,
                "vectors_per_class": None,
            },
        )
        dump_data_and_model(
            X,
            model,
            model_onnx,
            basename="SklearnBinNuSVCPT",
            allow_failure="StrictVersion(onnxruntime.__version__)"
                          " <= StrictVersion('0.4.0')"
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:29,代碼來源:test_sklearn_svm_converters.py

示例15: test_convert_nusvc_multi_pfalse

# 需要導入模塊: from sklearn import svm [as 別名]
# 或者: from sklearn.svm import NuSVC [as 別名]
def test_convert_nusvc_multi_pfalse(self):
        model, X = self._fit_multi_classification(
            NuSVC(probability=False, nu=0.1,
                  decision_function_shape='ovo'))
        model_onnx = convert_sklearn(
            model, "SVC", [("input", FloatTensorType([None, X.shape[1]]))])
        nodes = model_onnx.graph.node
        self.assertIsNotNone(nodes)
        svc_node = nodes[0]
        self._check_attributes(
            svc_node,
            {
                "coefficients": None,
                "kernel_params": None,
                "kernel_type": "RBF",
                "post_transform": None,
                "rho": None,
                "support_vectors": None,
                "vectors_per_class": None,
            },
        )
        dump_data_and_model(
            X, model, model_onnx,
            basename="SklearnMclNuSVCPF-Dec1",  # max relative error is 1e-5
            allow_failure="StrictVersion(onnxruntime.__version__)"
                          " < StrictVersion('0.5.0')") 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:28,代碼來源:test_sklearn_svm_converters.py


注:本文中的sklearn.svm.NuSVC方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。