本文整理匯總了Python中sklearn.random_projection.SparseRandomProjection方法的典型用法代碼示例。如果您正苦於以下問題:Python random_projection.SparseRandomProjection方法的具體用法?Python random_projection.SparseRandomProjection怎麽用?Python random_projection.SparseRandomProjection使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.random_projection
的用法示例。
在下文中一共展示了random_projection.SparseRandomProjection方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: reduce_dimensionality
# 需要導入模塊: from sklearn import random_projection [as 別名]
# 或者: from sklearn.random_projection import SparseRandomProjection [as 別名]
def reduce_dimensionality(X, method='svd', dimred=DIMRED, raw=False):
if method == 'svd':
k = min((dimred, X.shape[0], X.shape[1]))
U, s, Vt = pca(X, k=k, raw=raw)
return U[:, range(k)] * s[range(k)]
elif method == 'jl_sparse':
jls = JLSparse(n_components=dimred)
return jls.fit_transform(X).toarray()
elif method == 'hvg':
X = X.tocsc()
disp = dispersion(X)
highest_disp_idx = np.argsort(disp)[::-1][:dimred]
return X[:, highest_disp_idx].toarray()
else:
sys.stderr.write('ERROR: Unknown method {}.'.format(svd))
exit(1)
示例2: test_SparseRandomProjection_output_representation
# 需要導入模塊: from sklearn import random_projection [as 別名]
# 或者: from sklearn.random_projection import SparseRandomProjection [as 別名]
def test_SparseRandomProjection_output_representation():
for SparseRandomProjection in all_SparseRandomProjection:
# when using sparse input, the projected data can be forced to be a
# dense numpy array
rp = SparseRandomProjection(n_components=10, dense_output=True,
random_state=0)
rp.fit(data)
assert isinstance(rp.transform(data), np.ndarray)
sparse_data = sp.csr_matrix(data)
assert isinstance(rp.transform(sparse_data), np.ndarray)
# the output can be left to a sparse matrix instead
rp = SparseRandomProjection(n_components=10, dense_output=False,
random_state=0)
rp = rp.fit(data)
# output for dense input will stay dense:
assert isinstance(rp.transform(data), np.ndarray)
# output for sparse output will be sparse:
assert sp.issparse(rp.transform(sparse_data))
示例3: test_estimators_samples_deterministic
# 需要導入模塊: from sklearn import random_projection [as 別名]
# 或者: from sklearn.random_projection import SparseRandomProjection [as 別名]
def test_estimators_samples_deterministic():
# This test is a regression test to check that with a random step
# (e.g. SparseRandomProjection) and a given random state, the results
# generated at fit time can be identically reproduced at a later time using
# data saved in object attributes. Check issue #9524 for full discussion.
iris = load_iris()
X, y = iris.data, iris.target
base_pipeline = make_pipeline(SparseRandomProjection(n_components=2),
LogisticRegression())
clf = BaggingClassifier(base_estimator=base_pipeline,
max_samples=0.5,
random_state=0)
clf.fit(X, y)
pipeline_estimator_coef = clf.estimators_[0].steps[-1][1].coef_.copy()
estimator = clf.estimators_[0]
estimator_sample = clf.estimators_samples_[0]
estimator_feature = clf.estimators_features_[0]
X_train = (X[estimator_sample])[:, estimator_feature]
y_train = y[estimator_sample]
estimator.fit(X_train, y_train)
assert_array_equal(estimator.steps[-1][1].coef_, pipeline_estimator_coef)
示例4: __init__
# 需要導入模塊: from sklearn import random_projection [as 別名]
# 或者: from sklearn.random_projection import SparseRandomProjection [as 別名]
def __init__(self, **kwargs):
super().__init__()
self.estimator = sk_rp.SparseRandomProjection(**kwargs)
示例5: __init__
# 需要導入模塊: from sklearn import random_projection [as 別名]
# 或者: from sklearn.random_projection import SparseRandomProjection [as 別名]
def __init__(self, n_components='auto', density='auto', eps=0.1, dense_output=False, random_state=None):
self._hyperparams = {
'n_components': n_components,
'density': density,
'eps': eps,
'dense_output': dense_output,
'random_state': random_state}
self._wrapped_model = Op(**self._hyperparams)
示例6: test_objectmapper
# 需要導入模塊: from sklearn import random_projection [as 別名]
# 或者: from sklearn.random_projection import SparseRandomProjection [as 別名]
def test_objectmapper(self):
df = pdml.ModelFrame([])
self.assertIs(df.random_projection.GaussianRandomProjection, rp.GaussianRandomProjection)
self.assertIs(df.random_projection.SparseRandomProjection, rp.SparseRandomProjection)
self.assertIs(df.random_projection.johnson_lindenstrauss_min_dim, rp.johnson_lindenstrauss_min_dim)