當前位置: 首頁>>代碼示例>>Python>>正文


Python preprocessing.MaxAbsScaler方法代碼示例

本文整理匯總了Python中sklearn.preprocessing.MaxAbsScaler方法的典型用法代碼示例。如果您正苦於以下問題:Python preprocessing.MaxAbsScaler方法的具體用法?Python preprocessing.MaxAbsScaler怎麽用?Python preprocessing.MaxAbsScaler使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.preprocessing的用法示例。


在下文中一共展示了preprocessing.MaxAbsScaler方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_01_xgb_classifier

# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import MaxAbsScaler [as 別名]
def test_01_xgb_classifier(self):
        print("\ntest 01 (xgb classifier with preprocessing) [multi-class]\n")
        model = XGBClassifier()
        pipeline_obj = Pipeline([
            ('scaler',MaxAbsScaler()),
            ("model", model)
        ])
        pipeline_obj.fit(self.X,self.Y)
        file_name = "test01xgboost.pmml"
        xgboost_to_pmml(pipeline_obj, self.features, 'Species', file_name)
        model_name  = self.adapa_utility.upload_to_zserver(file_name)
        predictions, probabilities = self.adapa_utility.score_in_zserver(model_name, self.test_file)
        model_pred = pipeline_obj.predict(self.X)
        model_prob = pipeline_obj.predict_proba(self.X)
        self.assertEqual(self.adapa_utility.compare_predictions(predictions, model_pred), True)
        self.assertEqual(self.adapa_utility.compare_probability(probabilities, model_prob), True) 
開發者ID:nyoka-pmml,項目名稱:nyoka,代碼行數:18,代碼來源:testScoreWithAdapaXgboost.py

示例2: test_02_lgbm_classifier

# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import MaxAbsScaler [as 別名]
def test_02_lgbm_classifier(self):
        print("\ntest 02 (lgbm classifier with preprocessing) [multi-class]\n")
        model = LGBMClassifier()
        pipeline_obj = Pipeline([
            ('scaler',MaxAbsScaler()),
            ("model", model)
        ])
        pipeline_obj.fit(self.X,self.Y)
        file_name = "test02lgbm.pmml"
        lgb_to_pmml(pipeline_obj, self.features, 'Species', file_name)
        model_name  = self.adapa_utility.upload_to_zserver(file_name)
        predictions, probabilities = self.adapa_utility.score_in_zserver(model_name, self.test_file)
        model_pred = pipeline_obj.predict(self.X)
        model_prob = pipeline_obj.predict_proba(self.X)
        self.assertEqual(self.adapa_utility.compare_predictions(predictions, model_pred), True)
        self.assertEqual(self.adapa_utility.compare_probability(probabilities, model_prob), True) 
開發者ID:nyoka-pmml,項目名稱:nyoka,代碼行數:18,代碼來源:testScoreWithAdapaLgbm.py

示例3: train_model

# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import MaxAbsScaler [as 別名]
def train_model(self, train_file_path, model_path):
        print("==> Load the data ...")
        X_train, Y_train = self.load_file(train_file_path)
        print(train_file_path, shape(X_train))

        print("==> Train the model ...")
        min_max_scaler = preprocessing.MaxAbsScaler()
        X_train_minmax = min_max_scaler.fit_transform(X_train)
        clf = RandomForestRegressor(n_estimators=self.n_estimators)
        clf.fit(X_train_minmax.toarray(), Y_train)

        print("==> Save the model ...")
        pickle.dump(clf, open(model_path, 'wb'))

        scaler_path = model_path.replace('.pkl', '.scaler.pkl')
        pickle.dump(min_max_scaler, open(scaler_path, 'wb'))
        return clf 
開發者ID:rgtjf,項目名稱:Semantic-Texual-Similarity-Toolkits,代碼行數:19,代碼來源:classifier.py

示例4: normalize_cv

# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import MaxAbsScaler [as 別名]
def normalize_cv(X, y, i, norm="zero_score"):
    X_test = X[i]
    y_test = y[i]
    X_train = pd.concat(X[:i] + X[i+1:])
    y_train = pd.concat(y[:i] + y[i+1:])
    if norm == "min_max":
        scaler = preprocessing.MinMaxScaler()
    elif norm == "max_abs":
        scaler = preprocessing.MaxAbsScaler()
    else:
        scaler = preprocessing.StandardScaler()
    X_train = pd.DataFrame(scaler.fit_transform(X_train),
                           index=y_train.index.values)
    X_train.columns = X[i].columns.values
    X_test = pd.DataFrame(scaler.transform(X_test), index=y_test.index.values)
    X_test.columns = X[i].columns.values
    return X_train, X_test, y_train, y_test 
開發者ID:DigitalPhonetics,項目名稱:adviser,代碼行數:19,代碼來源:data_utils.py

示例5: transform

# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import MaxAbsScaler [as 別名]
def transform(self, X):
        """Scale the data.

        Parameters
        ----------
        X : array-like, shape = (n_samples, n_timestamps)
            Data to scale.

        Returns
        -------
        X_new : array-like, shape = (n_samples, n_timestamps)
            Scaled data.

        """
        X = check_array(X, dtype='float64')
        scaler = SklearnMaxAbsScaler()
        X_new = scaler.fit_transform(X.T).T
        return X_new 
開發者ID:johannfaouzi,項目名稱:pyts,代碼行數:20,代碼來源:scaler.py

示例6: test_objectmapper

# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import MaxAbsScaler [as 別名]
def test_objectmapper(self):
        df = pdml.ModelFrame([])
        self.assertIs(df.preprocessing.Binarizer, pp.Binarizer)
        self.assertIs(df.preprocessing.FunctionTransformer,
                      pp.FunctionTransformer)
        self.assertIs(df.preprocessing.Imputer, pp.Imputer)
        self.assertIs(df.preprocessing.KernelCenterer, pp.KernelCenterer)
        self.assertIs(df.preprocessing.LabelBinarizer, pp.LabelBinarizer)
        self.assertIs(df.preprocessing.LabelEncoder, pp.LabelEncoder)
        self.assertIs(df.preprocessing.MultiLabelBinarizer, pp.MultiLabelBinarizer)
        self.assertIs(df.preprocessing.MaxAbsScaler, pp.MaxAbsScaler)
        self.assertIs(df.preprocessing.MinMaxScaler, pp.MinMaxScaler)
        self.assertIs(df.preprocessing.Normalizer, pp.Normalizer)
        self.assertIs(df.preprocessing.OneHotEncoder, pp.OneHotEncoder)
        self.assertIs(df.preprocessing.PolynomialFeatures, pp.PolynomialFeatures)
        self.assertIs(df.preprocessing.RobustScaler, pp.RobustScaler)
        self.assertIs(df.preprocessing.StandardScaler, pp.StandardScaler) 
開發者ID:pandas-ml,項目名稱:pandas-ml,代碼行數:19,代碼來源:test_preprocessing.py

示例7: load_data

# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import MaxAbsScaler [as 別名]
def load_data():

    data_path = args['in']
        
    df = (pd.read_csv(data_path,skiprows=1).values).astype('float32')

    df_y = df[:,0].astype('float32')
    df_x = df[:, 1:PL].astype(np.float32)


#    scaler = MaxAbsScaler()
        
    scaler = StandardScaler()
    df_x = scaler.fit_transform(df_x)
        
    X_train, X_test, Y_train, Y_test = train_test_split(df_x, df_y, test_size= 0.20, random_state=42)
    
    print('x_train shape:', X_train.shape)
    print('x_test shape:', X_test.shape)

    
    return X_train, Y_train, X_test, Y_test 
開發者ID:ECP-CANDLE,項目名稱:Benchmarks,代碼行數:24,代碼來源:reg_go2.py

示例8: sparse_normalize_dataset

# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import MaxAbsScaler [as 別名]
def sparse_normalize_dataset(dataset):
    """ Normaliza dataset without removing the sparseness structure of the data """
    #Remove mean of dataset 
    dataset = dataset - np.mean(dataset)
    #Truncate to +/-3 standard deviations and scale to -1 to 1
    std_dev = 3 * np.std(dataset)
    dataset = np.maximum(np.minimum(dataset, std_dev), -std_dev) / std_dev
    #Rescale from [-1, 1] to [0.1, 0.9]
    dataset = (dataset + 1) * 0.4 + 0.1
    #dataset = (dataset-np.amin(dataset))/(np.amax(dataset)-np.amin(dataset))
    return dataset
    #return preprocessing.MaxAbsScaler().fit_transform(dataset) 
開發者ID:clazarom,項目名稱:DeepLearning_IDS,代碼行數:14,代碼來源:main_dl_experiments.py

示例9: scale_by_max_value

# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import MaxAbsScaler [as 別名]
def scale_by_max_value(X):
	"""
	Scale each feature by its abs maximum value.

	Keyword arguments:
	X -- The feature vectors	
	"""

	if verbose:
		print '\nScaling to the range [-1,1] ...'

	max_abs_scaler = preprocessing.MaxAbsScaler()
	return max_abs_scaler.fit_transform(X) 
開發者ID:alexpnt,項目名稱:default-credit-card-prediction,代碼行數:15,代碼來源:preprocessing.py

示例10: normalize

# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import MaxAbsScaler [as 別名]
def normalize(data, norm="zero_score", scaler=None):
    """Normalize pandas Dataframe.

    @param data: Input dataframe
    @param norm: normalization method [default: zero_score standardization],
    alternatives: 'min_max', 'max_abs'
    @return datascaled: normalized dataframe
    """
    if scaler is not None:
        datascaled = pd.DataFrame(scaler.transform(data),
                                  index=data.index.values)
        datascaled.columns = data.columns.values
    else:
        if norm == "min_max":
            scaler = preprocessing.MinMaxScaler()
        elif norm == "max_abs":
            scaler = preprocessing.MaxAbsScaler()
        else:
            scaler = preprocessing.StandardScaler()
        datascaled = pd.DataFrame(scaler.fit_transform(data),
                                  index=data.index.values)
        datascaled.columns = data.columns.values
    return datascaled, scaler


# deprecated - use sklearn.model_selection.train_test_split instead 
開發者ID:DigitalPhonetics,項目名稱:adviser,代碼行數:28,代碼來源:data_utils.py

示例11: _get_feature_scaler

# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import MaxAbsScaler [as 別名]
def _get_feature_scaler(self):
        """Get a feature value scaler based on the model settings"""
        if self.config.model_settings is None:
            scale_type = None
        else:
            scale_type = self.config.model_settings.get("feature_scaler")
        scaler = {
            "std-dev": StandardScaler(with_mean=False),
            "max-abs": MaxAbsScaler(),
        }.get(scale_type)
        return scaler 
開發者ID:cisco,項目名稱:mindmeld,代碼行數:13,代碼來源:text_models.py

示例12: _get_feature_scaler

# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import MaxAbsScaler [as 別名]
def _get_feature_scaler(scale_type):
        """Get a feature value scaler based on the model settings"""
        scaler = {
            "std-dev": StandardScaler(with_mean=False),
            "max-abs": MaxAbsScaler(),
        }.get(scale_type)
        return scaler 
開發者ID:cisco,項目名稱:mindmeld,代碼行數:9,代碼來源:memm.py

示例13: scale

# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import MaxAbsScaler [as 別名]
def scale(df, scaling=None):
    """Scale data included in pandas dataframe.

    Parameters
    ----------
    df : pandas dataframe
        dataframe to scale
    scaling : 'maxabs', 'minmax', 'std', or None, optional (default 'std')
        type of scaling to apply
    """

    if scaling is None or scaling.lower() == 'none':
        return df

    df = df.dropna(axis=1, how='any')

    # Scaling data
    if scaling == 'maxabs':
        # Normalizing -1 to 1
        scaler = MaxAbsScaler()
    elif scaling == 'minmax':
        # Scaling to [0,1]
        scaler = MinMaxScaler()
    else:
        # Standard normalization
        scaler = StandardScaler()

    mat = df.as_matrix()
    mat = scaler.fit_transform(mat)

    df = pd.DataFrame(mat, columns=df.columns)

    return df 
開發者ID:ECP-CANDLE,項目名稱:Benchmarks,代碼行數:35,代碼來源:p1b3.py

示例14: impute_and_scale

# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import MaxAbsScaler [as 別名]
def impute_and_scale(df, scaling='std'):
    """Impute missing values with mean and scale data included in pandas dataframe.

    Parameters
    ----------
    df : pandas dataframe
        dataframe to impute and scale
    scaling : 'maxabs' [-1,1], 'minmax' [0,1], 'std', or None, optional (default 'std')
        type of scaling to apply
    """

    df = df.dropna(axis=1, how='all')

    #imputer = Imputer(strategy='mean', axis=0)
    imputer = Imputer(strategy='mean')
    mat = imputer.fit_transform(df)

    if scaling is None or scaling.lower() == 'none':
        return pd.DataFrame(mat, columns=df.columns)

    if scaling == 'maxabs':
        scaler = MaxAbsScaler()
    elif scaling == 'minmax':
        scaler = MinMaxScaler()
    else:
        scaler = StandardScaler()

    mat = scaler.fit_transform(mat)

    df = pd.DataFrame(mat, columns=df.columns)

    return df 
開發者ID:ECP-CANDLE,項目名稱:Benchmarks,代碼行數:34,代碼來源:p1b3.py

示例15: impute_and_scale

# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import MaxAbsScaler [as 別名]
def impute_and_scale(df, scaling='std'):
    """Impute missing values with mean and scale data included in pandas dataframe.

    Parameters
    ----------
    df : pandas dataframe
        dataframe to impute and scale
    scaling : 'maxabs' [-1,1], 'minmax' [0,1], 'std', or None, optional (default 'std')
        type of scaling to apply
    """

    df = df.dropna(axis=1, how='all')

    imputer = Imputer(strategy='mean')
    mat = imputer.fit_transform(df)

    if scaling is None or scaling.lower() == 'none':
        return pd.DataFrame(mat, columns=df.columns)

    if scaling == 'maxabs':
        scaler = MaxAbsScaler()
    elif scaling == 'minmax':
        scaler = MinMaxScaler()
    else:
        scaler = StandardScaler()

    mat = scaler.fit_transform(mat)

    df = pd.DataFrame(mat, columns=df.columns)

    return df 
開發者ID:ECP-CANDLE,項目名稱:Benchmarks,代碼行數:33,代碼來源:NCI60.py


注:本文中的sklearn.preprocessing.MaxAbsScaler方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。