本文整理匯總了Python中sklearn.preprocessing.KBinsDiscretizer方法的典型用法代碼示例。如果您正苦於以下問題:Python preprocessing.KBinsDiscretizer方法的具體用法?Python preprocessing.KBinsDiscretizer怎麽用?Python preprocessing.KBinsDiscretizer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.preprocessing
的用法示例。
在下文中一共展示了preprocessing.KBinsDiscretizer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_encode_options
# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import KBinsDiscretizer [as 別名]
def test_encode_options():
est = KBinsDiscretizer(n_bins=[2, 3, 3, 3],
encode='ordinal').fit(X)
Xt_1 = est.transform(X)
est = KBinsDiscretizer(n_bins=[2, 3, 3, 3],
encode='onehot-dense').fit(X)
Xt_2 = est.transform(X)
assert not sp.issparse(Xt_2)
assert_array_equal(OneHotEncoder(
categories=[np.arange(i) for i in [2, 3, 3, 3]],
sparse=False)
.fit_transform(Xt_1), Xt_2)
est = KBinsDiscretizer(n_bins=[2, 3, 3, 3],
encode='onehot').fit(X)
Xt_3 = est.transform(X)
assert sp.issparse(Xt_3)
assert_array_equal(OneHotEncoder(
categories=[np.arange(i) for i in [2, 3, 3, 3]],
sparse=True)
.fit_transform(Xt_1).toarray(),
Xt_3.toarray())
示例2: test_nonuniform_strategies
# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import KBinsDiscretizer [as 別名]
def test_nonuniform_strategies(
strategy, expected_2bins, expected_3bins, expected_5bins):
X = np.array([0, 0.5, 2, 3, 9, 10]).reshape(-1, 1)
# with 2 bins
est = KBinsDiscretizer(n_bins=2, strategy=strategy, encode='ordinal')
Xt = est.fit_transform(X)
assert_array_equal(expected_2bins, Xt.ravel())
# with 3 bins
est = KBinsDiscretizer(n_bins=3, strategy=strategy, encode='ordinal')
Xt = est.fit_transform(X)
assert_array_equal(expected_3bins, Xt.ravel())
# with 5 bins
est = KBinsDiscretizer(n_bins=5, strategy=strategy, encode='ordinal')
Xt = est.fit_transform(X)
assert_array_equal(expected_5bins, Xt.ravel())
示例3: test_model_k_bins_discretiser_ordinal_uniform
# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import KBinsDiscretizer [as 別名]
def test_model_k_bins_discretiser_ordinal_uniform(self):
X = np.array([[1.2, 3.2, 1.3, -5.6], [4.3, -3.2, 5.7, 1.0],
[0, 3.2, 4.7, -8.9]])
model = KBinsDiscretizer(n_bins=3,
encode="ordinal",
strategy="uniform").fit(X)
model_onnx = convert_sklearn(
model,
"scikit-learn KBinsDiscretiser",
[("input", FloatTensorType([None, X.shape[1]]))],
target_opset=TARGET_OPSET
)
self.assertTrue(model_onnx is not None)
dump_data_and_model(
X.astype(np.float32),
model,
model_onnx,
basename="SklearnKBinsDiscretiserOrdinalUniform",
allow_failure="StrictVersion("
"onnxruntime.__version__)"
"<= StrictVersion('0.2.1')",
)
示例4: test_model_k_bins_discretiser_onehot_dense_uniform
# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import KBinsDiscretizer [as 別名]
def test_model_k_bins_discretiser_onehot_dense_uniform(self):
X = np.array([[1.2, 3.2, 1.3, -5.6], [4.3, -3.2, 5.7, 1.0],
[0, 3.2, 4.7, -8.9]])
model = KBinsDiscretizer(n_bins=[3, 2, 3, 4],
encode="onehot-dense",
strategy="uniform").fit(X)
model_onnx = convert_sklearn(
model,
"scikit-learn KBinsDiscretiser",
[("input", FloatTensorType([None, X.shape[1]]))],
target_opset=TARGET_OPSET
)
self.assertTrue(model_onnx is not None)
dump_data_and_model(
X.astype(np.float32),
model,
model_onnx,
basename="SklearnKBinsDiscretiserOneHotDenseUniform",
allow_failure="StrictVersion(onnxruntime.__version__)"
"<= StrictVersion('0.2.1')",
)
示例5: test_model_k_bins_discretiser_ordinal_uniform_int
# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import KBinsDiscretizer [as 別名]
def test_model_k_bins_discretiser_ordinal_uniform_int(self):
X = np.array([[1, 3, 3, -6], [3, -2, 5, 0], [0, 2, 7, -9]])
model = KBinsDiscretizer(n_bins=3,
encode="ordinal",
strategy="uniform").fit(X)
model_onnx = convert_sklearn(
model,
"scikit-learn KBinsDiscretiser",
[("input", Int64TensorType([None, X.shape[1]]))],
target_opset=TARGET_OPSET
)
self.assertTrue(model_onnx is not None)
dump_data_and_model(
X.astype(np.int64),
model,
model_onnx,
basename="SklearnKBinsDiscretiserOrdinalUniformInt",
allow_failure="StrictVersion(onnxruntime.__version__)"
"<= StrictVersion('0.2.1')",
)
示例6: test_model_k_bins_discretiser_ordinal_quantile_int
# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import KBinsDiscretizer [as 別名]
def test_model_k_bins_discretiser_ordinal_quantile_int(self):
X = np.array([
[1, 3, 3, -6], [3, -2, 5, 0], [0, 2, 7, -9],
[-1, 0, 1, -16], [31, -5, 15, 10], [12, -2, 8, -19],
[12, 13, 31, -16], [0, -21, 15, 30], [10, 22, 71, -91]
])
model = KBinsDiscretizer(n_bins=[3, 2, 3, 4],
encode="ordinal",
strategy="quantile").fit(X)
model_onnx = convert_sklearn(
model,
"scikit-learn KBinsDiscretiser",
[("input", Int64TensorType([None, X.shape[1]]))],
target_opset=TARGET_OPSET
)
self.assertTrue(model_onnx is not None)
dump_data_and_model(
X.astype(np.int64),
model,
model_onnx,
basename="SklearnKBinsDiscretiserOrdinalQuantileInt",
allow_failure="StrictVersion(onnxruntime.__version__)"
"<= StrictVersion('0.2.1')",
)
示例7: test_model_k_bins_discretiser_ordinal_kmeans_int
# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import KBinsDiscretizer [as 別名]
def test_model_k_bins_discretiser_ordinal_kmeans_int(self):
X = np.array([
[1, 3, 3, -6], [3, -2, 5, 0], [0, 2, 7, -9],
[-1, 0, 1, -16], [31, -5, 15, 10], [12, -2, 8, -19]
])
model = KBinsDiscretizer(n_bins=3, encode="ordinal",
strategy="kmeans").fit(X)
model_onnx = convert_sklearn(
model,
"scikit-learn KBinsDiscretiser",
[("input", Int64TensorType([None, X.shape[1]]))],
target_opset=TARGET_OPSET
)
self.assertTrue(model_onnx is not None)
dump_data_and_model(
X.astype(np.int64),
model,
model_onnx,
basename="SklearnKBinsDiscretiserOrdinalKMeansInt",
allow_failure="StrictVersion(onnxruntime.__version__)"
"<= StrictVersion('0.2.1')",
)
示例8: test_model_k_bins_discretiser_onehot_dense_uniform_int
# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import KBinsDiscretizer [as 別名]
def test_model_k_bins_discretiser_onehot_dense_uniform_int(self):
X = np.array([[1, 3, 3, -6], [3, -2, 5, 0], [0, 2, 7, -9]])
model = KBinsDiscretizer(n_bins=[3, 2, 3, 4],
encode="onehot-dense",
strategy="uniform").fit(X)
model_onnx = convert_sklearn(
model,
"scikit-learn KBinsDiscretiser",
[("input", Int64TensorType([None, X.shape[1]]))],
target_opset=TARGET_OPSET
)
self.assertTrue(model_onnx is not None)
dump_data_and_model(
X.astype(np.int64),
model,
model_onnx,
basename="SklearnKBinsDiscretiserOneHotDenseUniformInt",
allow_failure="StrictVersion(onnxruntime.__version__)"
"<= StrictVersion('0.2.1')",
)
示例9: test_model_k_bins_discretiser_onehot_dense_quantile_int
# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import KBinsDiscretizer [as 別名]
def test_model_k_bins_discretiser_onehot_dense_quantile_int(self):
X = np.array([[1, 3, 3, -6], [3, -2, 5, 0], [0, 2, 7, -9]])
model = KBinsDiscretizer(n_bins=[3, 2, 3, 4],
encode="onehot-dense",
strategy="quantile").fit(X)
model_onnx = convert_sklearn(
model,
"scikit-learn KBinsDiscretiser",
[("input", Int64TensorType([None, X.shape[1]]))],
target_opset=TARGET_OPSET
)
self.assertTrue(model_onnx is not None)
dump_data_and_model(
X.astype(np.int64),
model,
model_onnx,
basename="SklearnKBinsDiscretiserOneHotDenseQuantileInt",
allow_failure="StrictVersion(onnxruntime.__version__)"
"<= StrictVersion('0.2.1')",
)
示例10: test_fit_transform
# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import KBinsDiscretizer [as 別名]
def test_fit_transform(strategy, expected):
est = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy=strategy)
est.fit(X)
assert_array_equal(expected, est.transform(X))
示例11: test_valid_n_bins
# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import KBinsDiscretizer [as 別名]
def test_valid_n_bins():
KBinsDiscretizer(n_bins=2).fit_transform(X)
KBinsDiscretizer(n_bins=np.array([2])[0]).fit_transform(X)
assert KBinsDiscretizer(n_bins=2).fit(X).n_bins_.dtype == np.dtype(np.int)
示例12: test_invalid_n_bins
# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import KBinsDiscretizer [as 別名]
def test_invalid_n_bins():
est = KBinsDiscretizer(n_bins=1)
assert_raise_message(ValueError, "KBinsDiscretizer received an invalid "
"number of bins. Received 1, expected at least 2.",
est.fit_transform, X)
est = KBinsDiscretizer(n_bins=1.1)
assert_raise_message(ValueError, "KBinsDiscretizer received an invalid "
"n_bins type. Received float, expected int.",
est.fit_transform, X)
示例13: test_invalid_n_bins_array
# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import KBinsDiscretizer [as 別名]
def test_invalid_n_bins_array():
# Bad shape
n_bins = np.full((2, 4), 2.)
est = KBinsDiscretizer(n_bins=n_bins)
assert_raise_message(ValueError,
"n_bins must be a scalar or array of shape "
"(n_features,).", est.fit_transform, X)
# Incorrect number of features
n_bins = [1, 2, 2]
est = KBinsDiscretizer(n_bins=n_bins)
assert_raise_message(ValueError,
"n_bins must be a scalar or array of shape "
"(n_features,).", est.fit_transform, X)
# Bad bin values
n_bins = [1, 2, 2, 1]
est = KBinsDiscretizer(n_bins=n_bins)
assert_raise_message(ValueError,
"KBinsDiscretizer received an invalid number of bins "
"at indices 0, 3. Number of bins must be at least 2, "
"and must be an int.",
est.fit_transform, X)
# Float bin values
n_bins = [2.1, 2, 2.1, 2]
est = KBinsDiscretizer(n_bins=n_bins)
assert_raise_message(ValueError,
"KBinsDiscretizer received an invalid number of bins "
"at indices 0, 2. Number of bins must be at least 2, "
"and must be an int.",
est.fit_transform, X)
示例14: test_fit_transform_n_bins_array
# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import KBinsDiscretizer [as 別名]
def test_fit_transform_n_bins_array(strategy, expected):
est = KBinsDiscretizer(n_bins=[2, 3, 3, 3], encode='ordinal',
strategy=strategy).fit(X)
assert_array_equal(expected, est.transform(X))
# test the shape of bin_edges_
n_features = np.array(X).shape[1]
assert est.bin_edges_.shape == (n_features, )
for bin_edges, n_bins in zip(est.bin_edges_, est.n_bins_):
assert bin_edges.shape == (n_bins + 1, )
示例15: test_same_min_max
# 需要導入模塊: from sklearn import preprocessing [as 別名]
# 或者: from sklearn.preprocessing import KBinsDiscretizer [as 別名]
def test_same_min_max(strategy):
warnings.simplefilter("always")
X = np.array([[1, -2],
[1, -1],
[1, 0],
[1, 1]])
est = KBinsDiscretizer(strategy=strategy, n_bins=3, encode='ordinal')
assert_warns_message(UserWarning,
"Feature 0 is constant and will be replaced "
"with 0.", est.fit, X)
assert est.n_bins_[0] == 1
# replace the feature with zeros
Xt = est.transform(X)
assert_array_equal(Xt[:, 0], np.zeros(X.shape[0]))