當前位置: 首頁>>代碼示例>>Python>>正文


Python sklearn.pipeline方法代碼示例

本文整理匯總了Python中sklearn.pipeline方法的典型用法代碼示例。如果您正苦於以下問題:Python sklearn.pipeline方法的具體用法?Python sklearn.pipeline怎麽用?Python sklearn.pipeline使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn的用法示例。


在下文中一共展示了sklearn.pipeline方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: make_pmml_pipeline

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import pipeline [as 別名]
def make_pmml_pipeline(obj, active_fields = None, target_fields = None):
	"""Translates a regular Scikit-Learn estimator or pipeline to a PMML pipeline.

	Parameters:
	----------
	obj: BaseEstimator
		The object.

	active_fields: list of strings, optional
		Feature names. If missing, "x1", "x2", .., "xn" are assumed.

	target_fields: list of strings, optional
		Label name(s). If missing, "y" is assumed.

	"""
	steps = _filter_steps(_get_steps(obj))
	pipeline = PMMLPipeline(steps)
	if active_fields is not None:
		pipeline.active_fields = numpy.asarray(active_fields)
	if target_fields is not None:
		pipeline.target_fields = numpy.asarray(target_fields)
	return pipeline 
開發者ID:jpmml,項目名稱:sklearn2pmml,代碼行數:24,代碼來源:__init__.py

示例2: make_svm

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import pipeline [as 別名]
def make_svm(gamma, C):
    cls = sklearn.pipeline.make_pipeline(StandardScaler(),
        SVC(gamma=gamma, C=C, probability=True, cache_size=500, random_state=0))
    name = 'ss-svc-g%.4f-C%.1f' % (gamma, C)
    return (cls, name) 
開發者ID:MichaelHills,項目名稱:seizure-prediction,代碼行數:7,代碼來源:classifiers.py

示例3: make_lr

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import pipeline [as 別名]
def make_lr(C):
    cls = sklearn.pipeline.make_pipeline(StandardScaler(), LogisticRegression(C=C))
    name = 'ss-lr-C%.4f' % C
    return (cls, name) 
開發者ID:MichaelHills,項目名稱:seizure-prediction,代碼行數:6,代碼來源:classifiers.py

示例4: make_simple_lr

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import pipeline [as 別名]
def make_simple_lr():
    return (sklearn.pipeline.make_pipeline(StandardScaler(), SimpleLogisticRegression()), 'ss-slr') 
開發者ID:MichaelHills,項目名稱:seizure-prediction,代碼行數:4,代碼來源:classifiers.py

示例5: test_set_params

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import pipeline [as 別名]
def test_set_params():
    # test nested estimator parameter setting
    clf = Pipeline([("svc", SVC())])
    # non-existing parameter in svc
    assert_raises(ValueError, clf.set_params, svc__stupid_param=True)
    # non-existing parameter of pipeline
    assert_raises(ValueError, clf.set_params, svm__stupid_param=True)
    # we don't currently catch if the things in pipeline are estimators
    # bad_pipeline = Pipeline([("bad", NoEstimator())])
    # assert_raises(AttributeError, bad_pipeline.set_params,
    #               bad__stupid_param=True) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:13,代碼來源:test_base.py

示例6: check_pipeline_consistency

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import pipeline [as 別名]
def check_pipeline_consistency(name, estimator_orig):
    if estimator_orig._get_tags()['non_deterministic']:
        msg = name + ' is non deterministic'
        raise SkipTest(msg)

    # check that make_pipeline(est) gives same score as est
    X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]],
                      random_state=0, n_features=2, cluster_std=0.1)
    X -= X.min()
    X = pairwise_estimator_convert_X(X, estimator_orig, kernel=rbf_kernel)
    estimator = clone(estimator_orig)
    y = multioutput_estimator_convert_y_2d(estimator, y)
    set_random_state(estimator)
    pipeline = make_pipeline(estimator)
    estimator.fit(X, y)
    pipeline.fit(X, y)

    funcs = ["score", "fit_transform"]

    for func_name in funcs:
        func = getattr(estimator, func_name, None)
        if func is not None:
            func_pipeline = getattr(pipeline, func_name)
            result = func(X, y)
            result_pipe = func_pipeline(X, y)
            assert_allclose_dense_sparse(result, result_pipe) 
開發者ID:tslearn-team,項目名稱:tslearn,代碼行數:28,代碼來源:sklearn_patches.py

示例7: __init__

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import pipeline [as 別名]
def __init__(self, groupby, pipeline, errors='raise'):
        self.groupby = groupby
        self.pipeline = pipeline
        self.errors = errors 
開發者ID:octoenergy,項目名稱:timeserio,代碼行數:6,代碼來源:pipeline.py

示例8: _fit_subdf

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import pipeline [as 別名]
def _fit_subdf(self, sub_df, y=None):
        return clone(self.pipeline).fit(sub_df, y=y) 
開發者ID:octoenergy,項目名稱:timeserio,代碼行數:4,代碼來源:pipeline.py

示例9: _call_pipeline

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import pipeline [as 別名]
def _call_pipeline(self, df, y=None, attr=None):
        check_is_fitted(self, 'pipelines_')
        self.one_transformed = False
        transformed = [
            self._call_pipeline_subdf(key, sub_df, attr=attr)
            for key, sub_df, sub_y in self._iter_groups(df, y=y)
        ]
        if not self.one_transformed and self.errors == 'return_empty':
            raise KeyError('All keys missing in fitted pipelines')
        out = pd.concat(transformed).reindex(df.index)
        # Convert back to np.array if the pipeline returns a np.array
        if self.one_transformed and self.cast_to_numpy:
            return out.values
        return out 
開發者ID:octoenergy,項目名稱:timeserio,代碼行數:16,代碼來源:pipeline.py

示例10: required_columns

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import pipeline [as 別名]
def required_columns(self):
        groupby = [self.groupby] if type(self.groupby) is str else self.groupby
        return self.pipeline.required_columns | set(groupby) 
開發者ID:octoenergy,項目名稱:timeserio,代碼行數:5,代碼來源:pipeline.py

示例11: transformed_columns

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import pipeline [as 別名]
def transformed_columns(self, input_columns):
        return self.pipeline.transformed_columns(input_columns) 
開發者ID:octoenergy,項目名稱:timeserio,代碼行數:4,代碼來源:pipeline.py

示例12: _extract_metadata_from_model

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import pipeline [as 別名]
def _extract_metadata_from_model(
        model: BaseEstimator, metadata: dict = dict()
    ) -> dict:
        """
        Recursively check for :class:`gordo.machine.model.base.GordoBase` in a
        given ``model``. If such the model exists buried inside of a
        :class:`sklearn.pipeline.Pipeline` which is then part of another
        :class:`sklearn.base.BaseEstimator`, this function will return its metadata.

        Parameters
        ----------
        model: BaseEstimator
        metadata: dict
            Any initial starting metadata, but is mainly meant to be used during
            the recursive calls to accumulate any multiple
            :class:`gordo.machine.model.base.GordoBase` models found in this model

        Notes
        -----
        If there is a ``GordoBase`` model inside of a ``Pipeline`` which is not the final
        step, this function will not find it.

        Returns
        -------
        dict
            Dictionary representing accumulated calls to
            :meth:`gordo.machine.model.base.GordoBase.get_metadata`
        """
        metadata = metadata.copy()

        # If it's a Pipeline, only need to get the last step, which potentially has metadata
        if isinstance(model, Pipeline):
            final_step = model.steps[-1][1]
            metadata.update(ModelBuilder._extract_metadata_from_model(final_step))
            return metadata

        # GordoBase is simple, having a .get_metadata()
        if isinstance(model, GordoBase):
            metadata.update(model.get_metadata())

        # Continue to look at object values in case, we decided to have a GordoBase
        # which also had a GordoBase as a parameter/attribute, but will satisfy BaseEstimators
        # which can take a GordoBase model as a parameter, which will then have metadata to get
        for val in model.__dict__.values():
            if isinstance(val, Pipeline):
                metadata.update(
                    ModelBuilder._extract_metadata_from_model(val.steps[-1][1])
                )
            elif isinstance(val, GordoBase) or isinstance(val, BaseEstimator):
                metadata.update(ModelBuilder._extract_metadata_from_model(val))
        return metadata 
開發者ID:equinor,項目名稱:gordo,代碼行數:53,代碼來源:build_model.py

示例13: _get_estimator

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import pipeline [as 別名]
def _get_estimator(pblm, clf_key):
        """
        Returns sklearn classifier
        """
        tup = clf_key.split('-')
        wrap_type = None if len(tup) == 1 else tup[1]
        est_type = tup[0]
        multiclass_wrapper = {
            None: ut.identity,
            'OVR': sklearn.multiclass.OneVsRestClassifier,
            'OVO': sklearn.multiclass.OneVsOneClassifier,
        }[wrap_type]
        est_class = {
            'RF': sklearn.ensemble.RandomForestClassifier,
            'SVC': sklearn.svm.SVC,
            'Logit': sklearn.linear_model.LogisticRegression,
            'MLP': sklearn.neural_network.MLPClassifier,
        }[est_type]

        est_kw1, est_kw2 = pblm._estimator_params(est_type)
        est_params = ut.merge_dicts(est_kw1, est_kw2)

        # steps = []
        # steps.append((est_type, est_class(**est_params)))
        # if wrap_type is not None:
        #     steps.append((wrap_type, multiclass_wrapper))
        if est_type == 'MLP':
            def clf_partial():
                pipe = sklearn.pipeline.Pipeline([
                    ('inputer', sklearn.preprocessing.Imputer(
                        missing_values='NaN', strategy='mean', axis=0)),
                    # ('scale', sklearn.preprocessing.StandardScaler),
                    ('est', est_class(**est_params)),
                ])
                return multiclass_wrapper(pipe)
        elif est_type == 'Logit':
            def clf_partial():
                pipe = sklearn.pipeline.Pipeline([
                    ('inputer', sklearn.preprocessing.Imputer(
                        missing_values='NaN', strategy='mean', axis=0)),
                    ('est', est_class(**est_params)),
                ])
                return multiclass_wrapper(pipe)
        else:
            def clf_partial():
                return multiclass_wrapper(est_class(**est_params))

        return clf_partial 
開發者ID:Erotemic,項目名稱:ibeis,代碼行數:50,代碼來源:clf_helpers.py

示例14: train_wdclassifier_user

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import pipeline [as 別名]
def train_wdclassifier_user(training_set: Tuple[np.ndarray, np.ndarray],
                            svmType: str,
                            C: float,
                            gamma: Optional[float]) -> sklearn.svm.SVC:
    """ Trains an SVM classifier for a user

    Parameters
    ----------
    training_set: Tuple (x, y)
        The training set (features and labels). y should have labels -1 and 1
    svmType: string ('linear' or 'rbf')
        The SVM type
    C: float
        Regularization for the SVM optimization
    gamma: float
        Hyperparameter for the RBF kernel

    Returns
    -------
    sklearn.svm.SVC:
        The learned classifier

    """

    assert svmType in ['linear', 'rbf']

    train_x = training_set[0]
    train_y = training_set[1]

    # Adjust for the skew between positive and negative classes
    n_genuine = len([x for x in train_y if x == 1])
    n_forg = len([x for x in train_y if x == -1])
    skew = n_forg / float(n_genuine)

    # Train the model
    if svmType == 'rbf':
        model = sklearn.svm.SVC(C=C, gamma=gamma, class_weight={1: skew})
    else:
        model = sklearn.svm.SVC(kernel='linear', C=C, class_weight={1: skew})

    model_with_scaler = pipeline.Pipeline([('scaler', preprocessing.StandardScaler(with_mean=False)),
                                           ('classifier', model)])

    model_with_scaler.fit(train_x, train_y)

    return model_with_scaler 
開發者ID:luizgh,項目名稱:sigver,代碼行數:48,代碼來源:training.py


注:本文中的sklearn.pipeline方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。