本文整理匯總了Python中sklearn.neighbors.RadiusNeighborsClassifier方法的典型用法代碼示例。如果您正苦於以下問題:Python neighbors.RadiusNeighborsClassifier方法的具體用法?Python neighbors.RadiusNeighborsClassifier怎麽用?Python neighbors.RadiusNeighborsClassifier使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.neighbors
的用法示例。
在下文中一共展示了neighbors.RadiusNeighborsClassifier方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_radius_neighbors_classifier
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def test_radius_neighbors_classifier(n_samples=40,
n_features=5,
n_test_pts=10,
radius=0.5,
random_state=0):
# Test radius-based classification
rng = np.random.RandomState(random_state)
X = 2 * rng.rand(n_samples, n_features) - 1
y = ((X ** 2).sum(axis=1) < .5).astype(np.int)
y_str = y.astype(str)
weight_func = _weight_func
for algorithm in ALGORITHMS:
for weights in ['uniform', 'distance', weight_func]:
neigh = neighbors.RadiusNeighborsClassifier(radius=radius,
weights=weights,
algorithm=algorithm)
neigh.fit(X, y)
epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1)
y_pred = neigh.predict(X[:n_test_pts] + epsilon)
assert_array_equal(y_pred, y[:n_test_pts])
neigh.fit(X, y_str)
y_pred = neigh.predict(X[:n_test_pts] + epsilon)
assert_array_equal(y_pred, y_str[:n_test_pts])
示例2: test_radius_neighbors_classifier_when_no_neighbors
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def test_radius_neighbors_classifier_when_no_neighbors():
# Test radius-based classifier when no neighbors found.
# In this case it should rise an informative exception
X = np.array([[1.0, 1.0], [2.0, 2.0]])
y = np.array([1, 2])
radius = 0.1
z1 = np.array([[1.01, 1.01], [2.01, 2.01]]) # no outliers
z2 = np.array([[1.01, 1.01], [1.4, 1.4]]) # one outlier
weight_func = _weight_func
for outlier_label in [0, -1, None]:
for algorithm in ALGORITHMS:
for weights in ['uniform', 'distance', weight_func]:
rnc = neighbors.RadiusNeighborsClassifier
clf = rnc(radius=radius, weights=weights, algorithm=algorithm,
outlier_label=outlier_label)
clf.fit(X, y)
assert_array_equal(np.array([1, 2]),
clf.predict(z1))
if outlier_label is None:
assert_raises(ValueError, clf.predict, z2)
示例3: test_radius_neighbors_classifier_outlier_labeling
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def test_radius_neighbors_classifier_outlier_labeling():
# Test radius-based classifier when no neighbors found and outliers
# are labeled.
X = np.array([[1.0, 1.0], [2.0, 2.0], [0.99, 0.99],
[0.98, 0.98], [2.01, 2.01]])
y = np.array([1, 2, 1, 1, 2])
radius = 0.1
z1 = np.array([[1.01, 1.01], [2.01, 2.01]]) # no outliers
z2 = np.array([[1.4, 1.4], [1.01, 1.01], [2.01, 2.01]]) # one outlier
correct_labels1 = np.array([1, 2])
correct_labels2 = np.array([-1, 1, 2])
weight_func = _weight_func
for algorithm in ALGORITHMS:
for weights in ['uniform', 'distance', weight_func]:
clf = neighbors.RadiusNeighborsClassifier(radius=radius,
weights=weights,
algorithm=algorithm,
outlier_label=-1)
clf.fit(X, y)
assert_array_equal(correct_labels1, clf.predict(z1))
assert_array_equal(correct_labels2, clf.predict(z2))
示例4: test_same_radius_neighbors_parallel
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def test_same_radius_neighbors_parallel(algorithm):
X, y = datasets.make_classification(n_samples=30, n_features=5,
n_redundant=0, random_state=0)
X_train, X_test, y_train, y_test = train_test_split(X, y)
clf = neighbors.RadiusNeighborsClassifier(radius=10,
algorithm=algorithm)
clf.fit(X_train, y_train)
y = clf.predict(X_test)
dist, ind = clf.radius_neighbors(X_test)
graph = clf.radius_neighbors_graph(X_test, mode='distance').toarray()
clf.set_params(n_jobs=3)
clf.fit(X_train, y_train)
y_parallel = clf.predict(X_test)
dist_parallel, ind_parallel = clf.radius_neighbors(X_test)
graph_parallel = \
clf.radius_neighbors_graph(X_test, mode='distance').toarray()
assert_array_equal(y, y_parallel)
for i in range(len(dist)):
assert_array_almost_equal(dist[i], dist_parallel[i])
assert_array_equal(ind[i], ind_parallel[i])
assert_array_almost_equal(graph, graph_parallel)
示例5: test_objectmapper
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def test_objectmapper(self):
df = pdml.ModelFrame([])
self.assertIs(df.neighbors.NearestNeighbors,
neighbors.NearestNeighbors)
self.assertIs(df.neighbors.KNeighborsClassifier,
neighbors.KNeighborsClassifier)
self.assertIs(df.neighbors.RadiusNeighborsClassifier,
neighbors.RadiusNeighborsClassifier)
self.assertIs(df.neighbors.KNeighborsRegressor,
neighbors.KNeighborsRegressor)
self.assertIs(df.neighbors.RadiusNeighborsRegressor,
neighbors.RadiusNeighborsRegressor)
self.assertIs(df.neighbors.NearestCentroid, neighbors.NearestCentroid)
self.assertIs(df.neighbors.BallTree, neighbors.BallTree)
self.assertIs(df.neighbors.KDTree, neighbors.KDTree)
self.assertIs(df.neighbors.DistanceMetric, neighbors.DistanceMetric)
self.assertIs(df.neighbors.KernelDensity, neighbors.KernelDensity)
示例6: test_precomputed_cross_validation
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def test_precomputed_cross_validation():
# Ensure array is split correctly
rng = np.random.RandomState(0)
X = rng.rand(20, 2)
D = pairwise_distances(X, metric='euclidean')
y = rng.randint(3, size=20)
for Est in (neighbors.KNeighborsClassifier,
neighbors.RadiusNeighborsClassifier,
neighbors.KNeighborsRegressor,
neighbors.RadiusNeighborsRegressor):
metric_score = cross_val_score(Est(), X, y)
precomp_score = cross_val_score(Est(metric='precomputed'), D, y)
assert_array_equal(metric_score, precomp_score)
示例7: test_RadiusNeighborsClassifier_multioutput
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def test_RadiusNeighborsClassifier_multioutput():
# Test k-NN classifier on multioutput data
rng = check_random_state(0)
n_features = 2
n_samples = 40
n_output = 3
X = rng.rand(n_samples, n_features)
y = rng.randint(0, 3, (n_samples, n_output))
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
weights = [None, 'uniform', 'distance', _weight_func]
for algorithm, weights in product(ALGORITHMS, weights):
# Stack single output prediction
y_pred_so = []
for o in range(n_output):
rnn = neighbors.RadiusNeighborsClassifier(weights=weights,
algorithm=algorithm)
rnn.fit(X_train, y_train[:, o])
y_pred_so.append(rnn.predict(X_test))
y_pred_so = np.vstack(y_pred_so).T
assert_equal(y_pred_so.shape, y_test.shape)
# Multioutput prediction
rnn_mo = neighbors.RadiusNeighborsClassifier(weights=weights,
algorithm=algorithm)
rnn_mo.fit(X_train, y_train)
y_pred_mo = rnn_mo.predict(X_test)
assert_equal(y_pred_mo.shape, y_test.shape)
assert_array_almost_equal(y_pred_mo, y_pred_so)
示例8: test_radius_neighbors_classifier_when_no_neighbors
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def test_radius_neighbors_classifier_when_no_neighbors():
# Test radius-based classifier when no neighbors found.
# In this case it should rise an informative exception
X = np.array([[1.0, 1.0], [2.0, 2.0]])
y = np.array([1, 2])
radius = 0.1
z1 = np.array([[1.01, 1.01], [2.01, 2.01]]) # no outliers
z2 = np.array([[1.01, 1.01], [1.4, 1.4]]) # one outlier
weight_func = _weight_func
for outlier_label in [0, -1, None]:
for algorithm in ALGORITHMS:
for weights in ['uniform', 'distance', weight_func]:
rnc = neighbors.RadiusNeighborsClassifier
clf = rnc(radius=radius, weights=weights, algorithm=algorithm,
outlier_label=outlier_label)
clf.fit(X, y)
assert_array_equal(np.array([1, 2]),
clf.predict(z1))
if outlier_label is None:
assert_raises(ValueError, clf.predict, z2)
elif False:
assert_array_equal(np.array([1, outlier_label]),
clf.predict(z2))
示例9: test_precomputed
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def test_precomputed(random_state=42):
"""Tests unsupervised NearestNeighbors with a distance matrix."""
# Note: smaller samples may result in spurious test success
rng = np.random.RandomState(random_state)
X = rng.random_sample((10, 4))
Y = rng.random_sample((3, 4))
DXX = metrics.pairwise_distances(X, metric='euclidean')
DYX = metrics.pairwise_distances(Y, X, metric='euclidean')
for method in ['kneighbors']:
# TODO: also test radius_neighbors, but requires different assertion
# As a feature matrix (n_samples by n_features)
nbrs_X = neighbors.NearestNeighbors(n_neighbors=3)
nbrs_X.fit(X)
dist_X, ind_X = getattr(nbrs_X, method)(Y)
# As a dense distance matrix (n_samples by n_samples)
nbrs_D = neighbors.NearestNeighbors(n_neighbors=3, algorithm='brute',
metric='precomputed')
nbrs_D.fit(DXX)
dist_D, ind_D = getattr(nbrs_D, method)(DYX)
assert_array_almost_equal(dist_X, dist_D)
assert_array_almost_equal(ind_X, ind_D)
# Check auto works too
nbrs_D = neighbors.NearestNeighbors(n_neighbors=3, algorithm='auto',
metric='precomputed')
nbrs_D.fit(DXX)
dist_D, ind_D = getattr(nbrs_D, method)(DYX)
assert_array_almost_equal(dist_X, dist_D)
assert_array_almost_equal(ind_X, ind_D)
# Check X=None in prediction
dist_X, ind_X = getattr(nbrs_X, method)(None)
dist_D, ind_D = getattr(nbrs_D, method)(None)
assert_array_almost_equal(dist_X, dist_D)
assert_array_almost_equal(ind_X, ind_D)
# Must raise a ValueError if the matrix is not of correct shape
assert_raises(ValueError, getattr(nbrs_D, method), X)
target = np.arange(X.shape[0])
for Est in (neighbors.KNeighborsClassifier,
neighbors.RadiusNeighborsClassifier,
neighbors.KNeighborsRegressor,
neighbors.RadiusNeighborsRegressor):
print(Est)
est = Est(metric='euclidean')
est.radius = est.n_neighbors = 1
pred_X = est.fit(X, target).predict(Y)
est.metric = 'precomputed'
pred_D = est.fit(DXX, target).predict(DYX)
assert_array_almost_equal(pred_X, pred_D)
示例10: test_neighbors_badargs
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def test_neighbors_badargs():
# Test bad argument values: these should all raise ValueErrors
assert_raises(ValueError,
neighbors.NearestNeighbors,
algorithm='blah')
X = rng.random_sample((10, 2))
Xsparse = csr_matrix(X)
X3 = rng.random_sample((10, 3))
y = np.ones(10)
for cls in (neighbors.KNeighborsClassifier,
neighbors.RadiusNeighborsClassifier,
neighbors.KNeighborsRegressor,
neighbors.RadiusNeighborsRegressor):
assert_raises(ValueError,
cls,
weights='blah')
assert_raises(ValueError,
cls, p=-1)
assert_raises(ValueError,
cls, algorithm='blah')
nbrs = cls(algorithm='ball_tree', metric='haversine')
assert_raises(ValueError,
nbrs.predict,
X)
assert_raises(ValueError,
ignore_warnings(nbrs.fit),
Xsparse, y)
nbrs = cls(metric='haversine', algorithm='brute')
nbrs.fit(X3, y)
assert_raise_message(ValueError,
"Haversine distance only valid in 2 dimensions",
nbrs.predict,
X3)
nbrs = cls()
assert_raises(ValueError,
nbrs.fit,
np.ones((0, 2)), np.ones(0))
assert_raises(ValueError,
nbrs.fit,
X[:, :, None], y)
nbrs.fit(X, y)
assert_raises(ValueError,
nbrs.predict,
[[]])
if (isinstance(cls, neighbors.KNeighborsClassifier) or
isinstance(cls, neighbors.KNeighborsRegressor)):
nbrs = cls(n_neighbors=-1)
assert_raises(ValueError, nbrs.fit, X, y)
nbrs = neighbors.NearestNeighbors().fit(X)
assert_raises(ValueError, nbrs.kneighbors_graph, X, mode='blah')
assert_raises(ValueError, nbrs.radius_neighbors_graph, X, mode='blah')
示例11: get_pipeline_builder
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def get_pipeline_builder():
pipe_builder = PipelineBuilder()
# Feature Extraction
params = {}
pipe_builder.add_extractor('HashingVectorizer', HashingVectorizer, 'Hashing Vectorizer', params)
params = {'ngram_range': [(1, 1), (1, 2)], 'min_df': [5]}
pipe_builder.add_extractor('CountVectorizer', CountVectorizer, 'Count Vectorizer', params)
params = {'ngram_range': [(1, 1), (1, 2)], 'min_df': [5]}
pipe_builder.add_extractor('TfidfVectorizer', TfidfVectorizer, 'TfIdf Vectorizer', params)
# Dimension Reduction
params = {}
pipe_builder.add_reductor('No_Reduction', ModelNull, 'None', params)
params = {}
pipe_builder.add_reductor('TruncatedSVD', TruncatedSVD, 'Truncated SVD', params)
# Normalization
params = {}
pipe_builder.add_normalizer('No_Normalization', ModelNull, 'None', params)
params = {}
pipe_builder.add_normalizer('Normalizer', Normalizer, 'Normalizer', params)
# Classification Models
params = {}
pipe_builder.add_classifier('LogisticRegressionClassifier', LogisticRegression, 'Logistic Regression', params)
params = {}
pipe_builder.add_classifier('LinearSVC', LinearSVC, 'LinearSVC', params)
params = {}
pipe_builder.add_classifier('KNeighborsClassifier', KNeighborsClassifier, 'K-Neighbors', params)
params = {}
pipe_builder.add_classifier('RadiusNeighborsClassifier', RadiusNeighborsClassifier, 'Radius Neighbors', params)
return pipe_builder
示例12: test_neighbors_badargs
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def test_neighbors_badargs():
# Test bad argument values: these should all raise ValueErrors
assert_raises(ValueError,
neighbors.NearestNeighbors,
algorithm='blah')
X = rng.random_sample((10, 2))
Xsparse = csr_matrix(X)
y = np.ones(10)
for cls in (neighbors.KNeighborsClassifier,
neighbors.RadiusNeighborsClassifier,
neighbors.KNeighborsRegressor,
neighbors.RadiusNeighborsRegressor):
assert_raises(ValueError,
cls,
weights='blah')
assert_raises(ValueError,
cls, p=-1)
assert_raises(ValueError,
cls, algorithm='blah')
nbrs = cls(algorithm='ball_tree', metric='haversine')
assert_raises(ValueError,
nbrs.predict,
X)
assert_raises(ValueError,
ignore_warnings(nbrs.fit),
Xsparse, y)
nbrs = cls()
assert_raises(ValueError,
nbrs.fit,
np.ones((0, 2)), np.ones(0))
assert_raises(ValueError,
nbrs.fit,
X[:, :, None], y)
nbrs.fit(X, y)
assert_raises(ValueError,
nbrs.predict,
[[]])
if (isinstance(cls, neighbors.KNeighborsClassifier) or
isinstance(cls, neighbors.KNeighborsRegressor)):
nbrs = cls(n_neighbors=-1)
assert_raises(ValueError, nbrs.fit, X, y)
nbrs = neighbors.NearestNeighbors().fit(X)
assert_raises(ValueError, nbrs.kneighbors_graph, X, mode='blah')
assert_raises(ValueError, nbrs.radius_neighbors_graph, X, mode='blah')