當前位置: 首頁>>代碼示例>>Python>>正文


Python neighbors.RadiusNeighborsClassifier方法代碼示例

本文整理匯總了Python中sklearn.neighbors.RadiusNeighborsClassifier方法的典型用法代碼示例。如果您正苦於以下問題:Python neighbors.RadiusNeighborsClassifier方法的具體用法?Python neighbors.RadiusNeighborsClassifier怎麽用?Python neighbors.RadiusNeighborsClassifier使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.neighbors的用法示例。


在下文中一共展示了neighbors.RadiusNeighborsClassifier方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_radius_neighbors_classifier

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def test_radius_neighbors_classifier(n_samples=40,
                                     n_features=5,
                                     n_test_pts=10,
                                     radius=0.5,
                                     random_state=0):
    # Test radius-based classification
    rng = np.random.RandomState(random_state)
    X = 2 * rng.rand(n_samples, n_features) - 1
    y = ((X ** 2).sum(axis=1) < .5).astype(np.int)
    y_str = y.astype(str)

    weight_func = _weight_func

    for algorithm in ALGORITHMS:
        for weights in ['uniform', 'distance', weight_func]:
            neigh = neighbors.RadiusNeighborsClassifier(radius=radius,
                                                        weights=weights,
                                                        algorithm=algorithm)
            neigh.fit(X, y)
            epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1)
            y_pred = neigh.predict(X[:n_test_pts] + epsilon)
            assert_array_equal(y_pred, y[:n_test_pts])
            neigh.fit(X, y_str)
            y_pred = neigh.predict(X[:n_test_pts] + epsilon)
            assert_array_equal(y_pred, y_str[:n_test_pts]) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:27,代碼來源:test_neighbors.py

示例2: test_radius_neighbors_classifier_when_no_neighbors

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def test_radius_neighbors_classifier_when_no_neighbors():
    # Test radius-based classifier when no neighbors found.
    # In this case it should rise an informative exception

    X = np.array([[1.0, 1.0], [2.0, 2.0]])
    y = np.array([1, 2])
    radius = 0.1

    z1 = np.array([[1.01, 1.01], [2.01, 2.01]])  # no outliers
    z2 = np.array([[1.01, 1.01], [1.4, 1.4]])    # one outlier

    weight_func = _weight_func

    for outlier_label in [0, -1, None]:
        for algorithm in ALGORITHMS:
            for weights in ['uniform', 'distance', weight_func]:
                rnc = neighbors.RadiusNeighborsClassifier
                clf = rnc(radius=radius, weights=weights, algorithm=algorithm,
                          outlier_label=outlier_label)
                clf.fit(X, y)
                assert_array_equal(np.array([1, 2]),
                                   clf.predict(z1))
                if outlier_label is None:
                    assert_raises(ValueError, clf.predict, z2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:26,代碼來源:test_neighbors.py

示例3: test_radius_neighbors_classifier_outlier_labeling

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def test_radius_neighbors_classifier_outlier_labeling():
    # Test radius-based classifier when no neighbors found and outliers
    # are labeled.

    X = np.array([[1.0, 1.0], [2.0, 2.0], [0.99, 0.99],
                  [0.98, 0.98], [2.01, 2.01]])
    y = np.array([1, 2, 1, 1, 2])
    radius = 0.1

    z1 = np.array([[1.01, 1.01], [2.01, 2.01]])  # no outliers
    z2 = np.array([[1.4, 1.4], [1.01, 1.01], [2.01, 2.01]])    # one outlier
    correct_labels1 = np.array([1, 2])
    correct_labels2 = np.array([-1, 1, 2])

    weight_func = _weight_func

    for algorithm in ALGORITHMS:
        for weights in ['uniform', 'distance', weight_func]:
            clf = neighbors.RadiusNeighborsClassifier(radius=radius,
                                                      weights=weights,
                                                      algorithm=algorithm,
                                                      outlier_label=-1)
            clf.fit(X, y)
            assert_array_equal(correct_labels1, clf.predict(z1))
            assert_array_equal(correct_labels2, clf.predict(z2)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:27,代碼來源:test_neighbors.py

示例4: test_same_radius_neighbors_parallel

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def test_same_radius_neighbors_parallel(algorithm):
    X, y = datasets.make_classification(n_samples=30, n_features=5,
                                        n_redundant=0, random_state=0)
    X_train, X_test, y_train, y_test = train_test_split(X, y)

    clf = neighbors.RadiusNeighborsClassifier(radius=10,
                                              algorithm=algorithm)
    clf.fit(X_train, y_train)
    y = clf.predict(X_test)
    dist, ind = clf.radius_neighbors(X_test)
    graph = clf.radius_neighbors_graph(X_test, mode='distance').toarray()

    clf.set_params(n_jobs=3)
    clf.fit(X_train, y_train)
    y_parallel = clf.predict(X_test)
    dist_parallel, ind_parallel = clf.radius_neighbors(X_test)
    graph_parallel = \
        clf.radius_neighbors_graph(X_test, mode='distance').toarray()

    assert_array_equal(y, y_parallel)
    for i in range(len(dist)):
        assert_array_almost_equal(dist[i], dist_parallel[i])
        assert_array_equal(ind[i], ind_parallel[i])
    assert_array_almost_equal(graph, graph_parallel) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:26,代碼來源:test_neighbors.py

示例5: test_objectmapper

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def test_objectmapper(self):
        df = pdml.ModelFrame([])
        self.assertIs(df.neighbors.NearestNeighbors,
                      neighbors.NearestNeighbors)
        self.assertIs(df.neighbors.KNeighborsClassifier,
                      neighbors.KNeighborsClassifier)
        self.assertIs(df.neighbors.RadiusNeighborsClassifier,
                      neighbors.RadiusNeighborsClassifier)
        self.assertIs(df.neighbors.KNeighborsRegressor,
                      neighbors.KNeighborsRegressor)
        self.assertIs(df.neighbors.RadiusNeighborsRegressor,
                      neighbors.RadiusNeighborsRegressor)
        self.assertIs(df.neighbors.NearestCentroid, neighbors.NearestCentroid)
        self.assertIs(df.neighbors.BallTree, neighbors.BallTree)
        self.assertIs(df.neighbors.KDTree, neighbors.KDTree)
        self.assertIs(df.neighbors.DistanceMetric, neighbors.DistanceMetric)
        self.assertIs(df.neighbors.KernelDensity, neighbors.KernelDensity) 
開發者ID:pandas-ml,項目名稱:pandas-ml,代碼行數:19,代碼來源:test_neighbors.py

示例6: test_precomputed_cross_validation

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def test_precomputed_cross_validation():
    # Ensure array is split correctly
    rng = np.random.RandomState(0)
    X = rng.rand(20, 2)
    D = pairwise_distances(X, metric='euclidean')
    y = rng.randint(3, size=20)
    for Est in (neighbors.KNeighborsClassifier,
                neighbors.RadiusNeighborsClassifier,
                neighbors.KNeighborsRegressor,
                neighbors.RadiusNeighborsRegressor):
        metric_score = cross_val_score(Est(), X, y)
        precomp_score = cross_val_score(Est(metric='precomputed'), D, y)
        assert_array_equal(metric_score, precomp_score) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:15,代碼來源:test_neighbors.py

示例7: test_RadiusNeighborsClassifier_multioutput

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def test_RadiusNeighborsClassifier_multioutput():
    # Test k-NN classifier on multioutput data
    rng = check_random_state(0)
    n_features = 2
    n_samples = 40
    n_output = 3

    X = rng.rand(n_samples, n_features)
    y = rng.randint(0, 3, (n_samples, n_output))

    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    weights = [None, 'uniform', 'distance', _weight_func]

    for algorithm, weights in product(ALGORITHMS, weights):
        # Stack single output prediction
        y_pred_so = []
        for o in range(n_output):
            rnn = neighbors.RadiusNeighborsClassifier(weights=weights,
                                                      algorithm=algorithm)
            rnn.fit(X_train, y_train[:, o])
            y_pred_so.append(rnn.predict(X_test))

        y_pred_so = np.vstack(y_pred_so).T
        assert_equal(y_pred_so.shape, y_test.shape)

        # Multioutput prediction
        rnn_mo = neighbors.RadiusNeighborsClassifier(weights=weights,
                                                     algorithm=algorithm)
        rnn_mo.fit(X_train, y_train)
        y_pred_mo = rnn_mo.predict(X_test)

        assert_equal(y_pred_mo.shape, y_test.shape)
        assert_array_almost_equal(y_pred_mo, y_pred_so) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:36,代碼來源:test_neighbors.py

示例8: test_radius_neighbors_classifier_when_no_neighbors

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def test_radius_neighbors_classifier_when_no_neighbors():
    # Test radius-based classifier when no neighbors found.
    # In this case it should rise an informative exception

    X = np.array([[1.0, 1.0], [2.0, 2.0]])
    y = np.array([1, 2])
    radius = 0.1

    z1 = np.array([[1.01, 1.01], [2.01, 2.01]])  # no outliers
    z2 = np.array([[1.01, 1.01], [1.4, 1.4]])    # one outlier

    weight_func = _weight_func

    for outlier_label in [0, -1, None]:
        for algorithm in ALGORITHMS:
            for weights in ['uniform', 'distance', weight_func]:
                rnc = neighbors.RadiusNeighborsClassifier
                clf = rnc(radius=radius, weights=weights, algorithm=algorithm,
                          outlier_label=outlier_label)
                clf.fit(X, y)
                assert_array_equal(np.array([1, 2]),
                                   clf.predict(z1))
                if outlier_label is None:
                    assert_raises(ValueError, clf.predict, z2)
                elif False:
                    assert_array_equal(np.array([1, outlier_label]),
                                       clf.predict(z2)) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:29,代碼來源:test_neighbors.py

示例9: test_precomputed

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def test_precomputed(random_state=42):
    """Tests unsupervised NearestNeighbors with a distance matrix."""
    # Note: smaller samples may result in spurious test success
    rng = np.random.RandomState(random_state)
    X = rng.random_sample((10, 4))
    Y = rng.random_sample((3, 4))
    DXX = metrics.pairwise_distances(X, metric='euclidean')
    DYX = metrics.pairwise_distances(Y, X, metric='euclidean')
    for method in ['kneighbors']:
        # TODO: also test radius_neighbors, but requires different assertion

        # As a feature matrix (n_samples by n_features)
        nbrs_X = neighbors.NearestNeighbors(n_neighbors=3)
        nbrs_X.fit(X)
        dist_X, ind_X = getattr(nbrs_X, method)(Y)

        # As a dense distance matrix (n_samples by n_samples)
        nbrs_D = neighbors.NearestNeighbors(n_neighbors=3, algorithm='brute',
                                            metric='precomputed')
        nbrs_D.fit(DXX)
        dist_D, ind_D = getattr(nbrs_D, method)(DYX)
        assert_array_almost_equal(dist_X, dist_D)
        assert_array_almost_equal(ind_X, ind_D)

        # Check auto works too
        nbrs_D = neighbors.NearestNeighbors(n_neighbors=3, algorithm='auto',
                                            metric='precomputed')
        nbrs_D.fit(DXX)
        dist_D, ind_D = getattr(nbrs_D, method)(DYX)
        assert_array_almost_equal(dist_X, dist_D)
        assert_array_almost_equal(ind_X, ind_D)

        # Check X=None in prediction
        dist_X, ind_X = getattr(nbrs_X, method)(None)
        dist_D, ind_D = getattr(nbrs_D, method)(None)
        assert_array_almost_equal(dist_X, dist_D)
        assert_array_almost_equal(ind_X, ind_D)

        # Must raise a ValueError if the matrix is not of correct shape
        assert_raises(ValueError, getattr(nbrs_D, method), X)

    target = np.arange(X.shape[0])
    for Est in (neighbors.KNeighborsClassifier,
                neighbors.RadiusNeighborsClassifier,
                neighbors.KNeighborsRegressor,
                neighbors.RadiusNeighborsRegressor):
        print(Est)
        est = Est(metric='euclidean')
        est.radius = est.n_neighbors = 1
        pred_X = est.fit(X, target).predict(Y)
        est.metric = 'precomputed'
        pred_D = est.fit(DXX, target).predict(DYX)
        assert_array_almost_equal(pred_X, pred_D) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:55,代碼來源:test_neighbors.py

示例10: test_neighbors_badargs

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def test_neighbors_badargs():
    # Test bad argument values: these should all raise ValueErrors
    assert_raises(ValueError,
                  neighbors.NearestNeighbors,
                  algorithm='blah')

    X = rng.random_sample((10, 2))
    Xsparse = csr_matrix(X)
    X3 = rng.random_sample((10, 3))
    y = np.ones(10)

    for cls in (neighbors.KNeighborsClassifier,
                neighbors.RadiusNeighborsClassifier,
                neighbors.KNeighborsRegressor,
                neighbors.RadiusNeighborsRegressor):
        assert_raises(ValueError,
                      cls,
                      weights='blah')
        assert_raises(ValueError,
                      cls, p=-1)
        assert_raises(ValueError,
                      cls, algorithm='blah')

        nbrs = cls(algorithm='ball_tree', metric='haversine')
        assert_raises(ValueError,
                      nbrs.predict,
                      X)
        assert_raises(ValueError,
                      ignore_warnings(nbrs.fit),
                      Xsparse, y)

        nbrs = cls(metric='haversine', algorithm='brute')
        nbrs.fit(X3, y)
        assert_raise_message(ValueError,
                             "Haversine distance only valid in 2 dimensions",
                             nbrs.predict,
                             X3)

        nbrs = cls()
        assert_raises(ValueError,
                      nbrs.fit,
                      np.ones((0, 2)), np.ones(0))
        assert_raises(ValueError,
                      nbrs.fit,
                      X[:, :, None], y)
        nbrs.fit(X, y)
        assert_raises(ValueError,
                      nbrs.predict,
                      [[]])
        if (isinstance(cls, neighbors.KNeighborsClassifier) or
                isinstance(cls, neighbors.KNeighborsRegressor)):
            nbrs = cls(n_neighbors=-1)
            assert_raises(ValueError, nbrs.fit, X, y)

    nbrs = neighbors.NearestNeighbors().fit(X)

    assert_raises(ValueError, nbrs.kneighbors_graph, X, mode='blah')
    assert_raises(ValueError, nbrs.radius_neighbors_graph, X, mode='blah') 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:60,代碼來源:test_neighbors.py

示例11: get_pipeline_builder

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def get_pipeline_builder():
    pipe_builder = PipelineBuilder()

    # Feature Extraction
    params = {}
    pipe_builder.add_extractor('HashingVectorizer', HashingVectorizer, 'Hashing Vectorizer', params)

    params = {'ngram_range': [(1, 1), (1, 2)], 'min_df': [5]}
    pipe_builder.add_extractor('CountVectorizer', CountVectorizer, 'Count Vectorizer', params)

    params = {'ngram_range': [(1, 1), (1, 2)], 'min_df': [5]}
    pipe_builder.add_extractor('TfidfVectorizer', TfidfVectorizer, 'TfIdf Vectorizer', params)

    # Dimension Reduction
    params = {}
    pipe_builder.add_reductor('No_Reduction', ModelNull, 'None', params)

    params = {}
    pipe_builder.add_reductor('TruncatedSVD', TruncatedSVD, 'Truncated SVD', params)

    # Normalization
    params = {}
    pipe_builder.add_normalizer('No_Normalization', ModelNull, 'None', params)

    params = {}
    pipe_builder.add_normalizer('Normalizer', Normalizer, 'Normalizer', params)

    # Classification Models

    params = {}
    pipe_builder.add_classifier('LogisticRegressionClassifier', LogisticRegression, 'Logistic Regression', params)

    params = {}
    pipe_builder.add_classifier('LinearSVC', LinearSVC, 'LinearSVC', params)

    params = {}
    pipe_builder.add_classifier('KNeighborsClassifier', KNeighborsClassifier, 'K-Neighbors', params)

    params = {}
    pipe_builder.add_classifier('RadiusNeighborsClassifier', RadiusNeighborsClassifier, 'Radius Neighbors', params)

    return pipe_builder 
開發者ID:texta-tk,項目名稱:texta,代碼行數:44,代碼來源:pipeline_builder.py

示例12: test_neighbors_badargs

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import RadiusNeighborsClassifier [as 別名]
def test_neighbors_badargs():
    # Test bad argument values: these should all raise ValueErrors
    assert_raises(ValueError,
                  neighbors.NearestNeighbors,
                  algorithm='blah')

    X = rng.random_sample((10, 2))
    Xsparse = csr_matrix(X)
    y = np.ones(10)

    for cls in (neighbors.KNeighborsClassifier,
                neighbors.RadiusNeighborsClassifier,
                neighbors.KNeighborsRegressor,
                neighbors.RadiusNeighborsRegressor):
        assert_raises(ValueError,
                      cls,
                      weights='blah')
        assert_raises(ValueError,
                      cls, p=-1)
        assert_raises(ValueError,
                      cls, algorithm='blah')
        nbrs = cls(algorithm='ball_tree', metric='haversine')
        assert_raises(ValueError,
                      nbrs.predict,
                      X)
        assert_raises(ValueError,
                      ignore_warnings(nbrs.fit),
                      Xsparse, y)
        nbrs = cls()
        assert_raises(ValueError,
                      nbrs.fit,
                      np.ones((0, 2)), np.ones(0))
        assert_raises(ValueError,
                      nbrs.fit,
                      X[:, :, None], y)
        nbrs.fit(X, y)
        assert_raises(ValueError,
                      nbrs.predict,
                      [[]])
        if (isinstance(cls, neighbors.KNeighborsClassifier) or
                isinstance(cls, neighbors.KNeighborsRegressor)):
            nbrs = cls(n_neighbors=-1)
            assert_raises(ValueError, nbrs.fit, X, y)

    nbrs = neighbors.NearestNeighbors().fit(X)

    assert_raises(ValueError, nbrs.kneighbors_graph, X, mode='blah')
    assert_raises(ValueError, nbrs.radius_neighbors_graph, X, mode='blah') 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:50,代碼來源:test_neighbors.py


注:本文中的sklearn.neighbors.RadiusNeighborsClassifier方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。