本文整理匯總了Python中sklearn.neighbors.NearestNeighbors方法的典型用法代碼示例。如果您正苦於以下問題:Python neighbors.NearestNeighbors方法的具體用法?Python neighbors.NearestNeighbors怎麽用?Python neighbors.NearestNeighbors使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.neighbors
的用法示例。
在下文中一共展示了neighbors.NearestNeighbors方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: fit
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import NearestNeighbors [as 別名]
def fit(self, X, y):
'''
Set's up the train set and self.NN object
'''
# Create a NearestNeighbors (NN) object. We will use it in `predict` function
self.NN = NearestNeighbors(n_neighbors=max(self.k_list),
metric=self.metric,
n_jobs=1,
algorithm='brute' if self.metric=='cosine' else 'auto')
self.NN.fit(X)
# Store labels
self.y_train = y
# Save how many classes we have
self.n_classes = np.unique(y).shape[0] if self.n_classes_ is None else self.n_classes_
示例2: nearest_neighbor
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import NearestNeighbors [as 別名]
def nearest_neighbor(src, dst):
'''
Find the nearest (Euclidean) neighbor in dst for each point in src
Input:
src: Nxm array of points
dst: Nxm array of points
Output:
distances: Euclidean distances of the nearest neighbor
indices: dst indices of the nearest neighbor
'''
assert src.shape == dst.shape
neigh = NearestNeighbors(n_neighbors=1)
neigh.fit(dst)
distances, indices = neigh.kneighbors(src, return_distance=True)
return distances.ravel(), indices.ravel()
示例3: point_add_sem_label
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import NearestNeighbors [as 別名]
def point_add_sem_label(pt, sem, k=10):
sem_pt = sem[:, 0:3]
sem_label = sem[:,3]
pt_label = np.zeros(pt.shape[0])
if pt.shape[0]==0:
return pt_label
else:
nbrs = NearestNeighbors(n_neighbors=k,algorithm='ball_tree').fit(sem_pt)
distances, indices = nbrs.kneighbors(pt)
for i in range(pt.shape[0]):
labels = sem_label[indices[i]]
l, count = stats.mode(labels, axis=None)
pt_label[i] = l
return pt_label
# ----------------------------------------
# Testing
# ----------------------------------------
示例4: testGPUFaissNearestNeighborsExecution
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import NearestNeighbors [as 別名]
def testGPUFaissNearestNeighborsExecution(self):
rs = np.random.RandomState(0)
raw_X = rs.rand(10, 5)
raw_Y = rs.rand(8, 5)
# test faiss execution
X = mt.tensor(raw_X, chunk_size=7).to_gpu()
Y = mt.tensor(raw_Y, chunk_size=8).to_gpu()
nn = NearestNeighbors(n_neighbors=3, algorithm='faiss', metric='l2')
nn.fit(X)
ret = nn.kneighbors(Y)
snn = SkNearestNeighbors(n_neighbors=3, algorithm='auto', metric='l2')
snn.fit(raw_X)
expected = snn.kneighbors(raw_Y)
result = [r.fetch() for r in ret]
np.testing.assert_almost_equal(result[0].get(), expected[0], decimal=6)
np.testing.assert_almost_equal(result[1].get(), expected[1])
示例5: find_best_eps
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import NearestNeighbors [as 別名]
def find_best_eps(data, q=0.05):
"""
Find best maximal distance (eps) between dots for DBSCAN clustering.
Parameters
-------
data: pd.DataFrame
Dataframe with features for clustering indexed as in ``retention_config.index_col``
q: float, optional
Quantile of nearest neighbor positive distance between dots. The value of it will be an eps. Default: ``0.05``
Returns
-------
Optimal eps
Return type
-------
Float
"""
nn = NearestNeighbors()
nn.fit(data)
dist = nn.kneighbors()[0]
dist = dist.flatten()
dist = dist[dist > 0]
return np.quantile(dist, q)
示例6: test_unsupervised_kneighbors
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import NearestNeighbors [as 別名]
def test_unsupervised_kneighbors(n_samples=20, n_features=5,
n_query_pts=2, n_neighbors=5):
# Test unsupervised neighbors methods
X = rng.rand(n_samples, n_features)
test = rng.rand(n_query_pts, n_features)
for p in P:
results_nodist = []
results = []
for algorithm in ALGORITHMS:
neigh = neighbors.NearestNeighbors(n_neighbors=n_neighbors,
algorithm=algorithm,
p=p)
neigh.fit(X)
results_nodist.append(neigh.kneighbors(test,
return_distance=False))
results.append(neigh.kneighbors(test, return_distance=True))
for i in range(len(results) - 1):
assert_array_almost_equal(results_nodist[i], results[i][1])
assert_array_almost_equal(results[i][0], results[i + 1][0])
assert_array_almost_equal(results[i][1], results[i + 1][1])
示例7: test_unsupervised_inputs
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import NearestNeighbors [as 別名]
def test_unsupervised_inputs():
# test the types of valid input into NearestNeighbors
X = rng.random_sample((10, 3))
nbrs_fid = neighbors.NearestNeighbors(n_neighbors=1)
nbrs_fid.fit(X)
dist1, ind1 = nbrs_fid.kneighbors(X)
nbrs = neighbors.NearestNeighbors(n_neighbors=1)
for input in (nbrs_fid, neighbors.BallTree(X), neighbors.KDTree(X)):
nbrs.fit(input)
dist2, ind2 = nbrs.kneighbors(X)
assert_array_almost_equal(dist1, dist2)
assert_array_almost_equal(ind1, ind2)
示例8: test_radius_neighbors_boundary_handling
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import NearestNeighbors [as 別名]
def test_radius_neighbors_boundary_handling():
"""Test whether points lying on boundary are handled consistently
Also ensures that even with only one query point, an object array
is returned rather than a 2d array.
"""
X = np.array([[1.5], [3.0], [3.01]])
radius = 3.0
for algorithm in ALGORITHMS:
nbrs = neighbors.NearestNeighbors(radius=radius,
algorithm=algorithm).fit(X)
results = nbrs.radius_neighbors([[0.0]], return_distance=False)
assert_equal(results.shape, (1,))
assert_equal(results.dtype, object)
assert_array_equal(results[0], [0, 1])
示例9: test_callable_metric
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import NearestNeighbors [as 別名]
def test_callable_metric():
def custom_metric(x1, x2):
return np.sqrt(np.sum(x1 ** 2 + x2 ** 2))
X = np.random.RandomState(42).rand(20, 2)
nbrs1 = neighbors.NearestNeighbors(3, algorithm='auto',
metric=custom_metric)
nbrs2 = neighbors.NearestNeighbors(3, algorithm='brute',
metric=custom_metric)
nbrs1.fit(X)
nbrs2.fit(X)
dist1, ind1 = nbrs1.kneighbors(X)
dist2, ind2 = nbrs2.kneighbors(X)
assert_array_almost_equal(dist1, dist2)
示例10: nearest_neighbor
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import NearestNeighbors [as 別名]
def nearest_neighbor(self,src, dst):
'''
Find the nearest (Euclidean) neighbor in dst for each point in src
Input:
src: Nxm array of points
dst: Nxm array of points
Output:
distances: Euclidean distances of the nearest neighbor
indices: dst indices of the nearest neighbor
'''
assert src.shape == dst.shape
neigh = NearestNeighbors(n_neighbors=1)
neigh.fit(dst)
distances, indices = neigh.kneighbors(src, return_distance=True)
return distances.ravel(), indices.ravel()
示例11: fit
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import NearestNeighbors [as 別名]
def fit(self, X, y):
# Split the training set in two
X_fit, self.X_val_, y_fit, self.y_val_ = model_selection.train_test_split(
X,
y,
test_size=self.test_ratio,
random_state=self.random_state
)
# Fit the nearest neighbours
n_neighbors = int(self.neighbors_ratio * len(self.X_val_))
self.nn_ = neighbors.NearestNeighbors(n_neighbors=n_neighbors, algorithm=self.algorithm)
self.nn_.fit(self.X_val_)
# Fit the ensemble
self.ensemble.fit(X_fit, y_fit)
return self
示例12: __init__
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import NearestNeighbors [as 別名]
def __init__(self, states, rewards, image_plot, ax, images_path, view=0):
self.image_plot = image_plot
self.images_path = images_path
self.knn = NearestNeighbors(n_neighbors=1, algorithm='ball_tree').fit(states)
self.state_dim = states.shape[1]
self.ax = ax
self.states = states
self.rewards = rewards
self.view = view
# Highlight the selected state
self.kwargs = dict(s=130, color='green', alpha=0.7)
coords = self.getCoords(0)
if states.shape[1] > 2:
self.dot = ax.scatter([coords[0]], [coords[1]], [coords[2]], **self.kwargs)
else:
self.dot = ax.scatter([coords[0]], [coords[1]], **self.kwargs)
示例13: _fit
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import NearestNeighbors [as 別名]
def _fit(self, X):
n_samples, _ = X.shape
self.n_neighbors_ = np.maximum(
1, np.minimum(self.n_neighbors, n_samples - 1)
)
self.estimator_ = NearestNeighbors(
algorithm = self.algorithm,
leaf_size = self.leaf_size,
metric = self.metric,
n_jobs = self.n_jobs,
n_neighbors = self.n_neighbors_,
p = self.p,
metric_params = self.metric_params
).fit(X)
return self
示例14: _fit
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import NearestNeighbors [as 別名]
def _fit(self, X):
n_samples, _ = X.shape
self.n_neighbors_ = np.minimum(self.n_neighbors, n_samples - 1)
self.estimator_ = NearestNeighbors(
algorithm = self.algorithm,
leaf_size = self.leaf_size,
metric = self.metric,
n_jobs = self.n_jobs,
n_neighbors = self.n_neighbors_,
p = self.p,
metric_params = self.metric_params
).fit(X)
self._anomaly_score_min = np.max(
self._anomaly_score(X, regularize=False)
)
return self
示例15: do_classify
# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import NearestNeighbors [as 別名]
def do_classify(train_x, train_y, test_x, test_y):
train_x_bow, test_x_bow = get_all_bow(train_x, test_x)
classifier = NearestNeighbors(n_neighbors=1, algorithm='ball_tree').fit(train_x_bow)
distances, indices = classifier.kneighbors(test_x_bow)
indices = [index[0] for index in indices]
exact = 0.0
dfa_equal = 0.0
for row_index in range(len(test_x_bow)):
gold = test_y[row_index]
pred_index = indices[row_index]
pred = train_y[pred_index]
print("PRED: {}".format(pred))
print("GOLD: {}".format(gold))
if pred == gold:
exact += 1.0
print("string equal")
if regex_equiv_from_raw(pred, gold):
dfa_equal += 1.0
print("dfa equal")
print("")
print("{} String-Equal Correct".format(exact/len(test_x_bow)))
print("{} DFA-Equal Correct".format(dfa_equal/len(test_x_bow)))