當前位置: 首頁>>代碼示例>>Python>>正文


Python neighbors.KDTree方法代碼示例

本文整理匯總了Python中sklearn.neighbors.KDTree方法的典型用法代碼示例。如果您正苦於以下問題:Python neighbors.KDTree方法的具體用法?Python neighbors.KDTree怎麽用?Python neighbors.KDTree使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.neighbors的用法示例。


在下文中一共展示了neighbors.KDTree方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: fit

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import KDTree [as 別名]
def fit(self, X, y):
        """ Fit Analog model using a KDTree

        Parameters
        ----------
        X : pd.Series or pd.DataFrame, shape (n_samples, 1)
            Training data
        y : pd.Series or pd.DataFrame, shape (n_samples, 1)
            Target values.

        Returns
        -------
        self : returns an instance of self.
        """
        if len(X) < self.n_analogs:
            warnings.warn('length of X is less than n_analogs, setting n_analogs = len(X)')
            self.n_analogs = len(X)

        self.kdtree_ = KDTree(X, **self.kdtree_kwargs)
        self.y_ = y

        return self 
開發者ID:jhamman,項目名稱:scikit-downscale,代碼行數:24,代碼來源:gard.py

示例2: point_cloud_overlap

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import KDTree [as 別名]
def point_cloud_overlap(pc_src,pc_tgt,R_gt_44):
    pc_src_trans = np.matmul(R_gt_44[:3,:3],pc_src.T) +R_gt_44[:3,3:4]
    tree = KDTree(pc_tgt)
    nearest_dist, nearest_ind = tree.query(pc_src_trans.T, k=1)
    nns2t = np.min(nearest_dist)
    hasCorres=(nearest_dist < 0.08)
    overlap_val_s2t = hasCorres.sum()/pc_src.shape[0]

    pc_tgt_trans = np.matmul(np.linalg.inv(R_gt_44),np.concatenate((pc_tgt.T,np.ones([1,pc_tgt.shape[0]]))))[:3,:]
    tree = KDTree(pc_src)
    nearest_dist, nearest_ind = tree.query(pc_tgt_trans.T, k=1)
    nnt2s = np.min(nearest_dist)
    hasCorres=(nearest_dist < 0.08)
    overlap_val_t2s = hasCorres.sum()/pc_tgt.shape[0]

    overlap_val = max(overlap_val_s2t,overlap_val_t2s)
    cam_dist_this = np.linalg.norm(R_gt_44[:3,3])
    pc_dist_this = np.linalg.norm(pc_src_trans.mean(1) - pc_tgt.T.mean(1))
    pc_nn = (nns2t+nnt2s)/2
    return overlap_val,cam_dist_this,pc_dist_this,pc_nn 
開發者ID:zhenpeiyang,項目名稱:RelativePose,代碼行數:22,代碼來源:util.py

示例3: kd_align

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import KDTree [as 別名]
def kd_align(emb1, emb2, normalize=False, distance_metric = "euclidean", num_top = 50):
	kd_tree = KDTree(emb2, metric = distance_metric)	
		
	row = np.array([])
	col = np.array([])
	data = np.array([])
	
	dist, ind = kd_tree.query(emb1, k = num_top)
	print "queried alignments"
	row = np.array([])
	for i in range(emb1.shape[0]):
		row = np.concatenate((row, np.ones(num_top)*i))
	col = ind.flatten()
	data = np.exp(-dist).flatten()
	sparse_align_matrix = coo_matrix((data, (row, col)), shape=(emb1.shape[0], emb2.shape[0]))
	return sparse_align_matrix.tocsr() 
開發者ID:GemsLab,項目名稱:REGAL,代碼行數:18,代碼來源:alignments.py

示例4: test_unsupervised_inputs

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import KDTree [as 別名]
def test_unsupervised_inputs():
    # test the types of valid input into NearestNeighbors
    X = rng.random_sample((10, 3))

    nbrs_fid = neighbors.NearestNeighbors(n_neighbors=1)
    nbrs_fid.fit(X)

    dist1, ind1 = nbrs_fid.kneighbors(X)

    nbrs = neighbors.NearestNeighbors(n_neighbors=1)

    for input in (nbrs_fid, neighbors.BallTree(X), neighbors.KDTree(X)):
        nbrs.fit(input)
        dist2, ind2 = nbrs.kneighbors(X)

        assert_array_almost_equal(dist1, dist2)
        assert_array_almost_equal(ind1, ind2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:19,代碼來源:test_neighbors.py

示例5: freeze_junction

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import KDTree [as 別名]
def freeze_junction(self, status=True):
        self._freeze_junction = status
        if status:
            clusters = fclusterdata(self._junctions, self._eps_junc, criterion="distance")
            junc_groups = {}
            for ind_junc, ind_group in enumerate(clusters):
                if ind_group not in junc_groups.keys():
                    junc_groups[ind_group] = []
                junc_groups[ind_group].append(self._junctions[ind_junc])
            if self.verbose:
                print(f"{len(self._junctions) - len(junc_groups)} junctions merged.")
            self._junctions = [np.mean(junc_group, axis=0) for junc_group in junc_groups.values()]

            self._kdtree = KDTree(self._junctions, leaf_size=30)
            dists, inds = self._kdtree.query(self._junctions, k=2)
            repl_inds = np.nonzero(dists.sum(axis=1) < self._eps_junc)[0].tolist()
            # assert len(repl_inds) == 0
        else:
            self._kdtree = None 
開發者ID:svip-lab,項目名稱:PPGNet,代碼行數:21,代碼來源:line_graph.py

示例6: test_neighbors

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import KDTree [as 別名]
def test_neighbors(adatas):
    adata_ref = adatas[0].copy()
    adata_new = adatas[1].copy()

    ing = sc.tl.Ingest(adata_ref)
    ing.fit(adata_new)
    ing.neighbors(k=10)
    indices = ing._indices

    tree = KDTree(adata_ref.obsm['X_pca'])
    true_indices = tree.query(ing._obsm['rep'], 10, return_distance=False)

    num_correct = 0.0
    for i in range(adata_new.n_obs):
        num_correct += np.sum(np.in1d(true_indices[i], indices[i]))
    percent_correct = num_correct / (adata_new.n_obs * 10)

    assert percent_correct > 0.99 
開發者ID:theislab,項目名稱:scanpy,代碼行數:20,代碼來源:test_ingest.py

示例7: knnsearch

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import KDTree [as 別名]
def knnsearch(target, source, metrics = 'euclidean', k_size =1, leaf_sizes=30):
    """use target build KDTree
    use source to calculate it 
    ```
    """
    # make sure they have the same size
    if not (target.shape[1] == source.shape[1]):
        raise('Two Inputs are not same size or They need to be [N(size), D(dimension)] input')

    kdt_build = KDTree(target, leaf_size = leaf_sizes, metric=metrics)
    distances, indices = kdt_build.query(source, k=k_size)

    averagedist = np.sum(distances) / (source.shape[0])  # assume they have [N,D] 

    return (averagedist, distances, indices)

# get high frequency vert list 
開發者ID:zhuhao-nju,項目名稱:hmd,代碼行數:19,代碼來源:eval_functions.py

示例8: test_nn_descent_neighbor_accuracy

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import KDTree [as 別名]
def test_nn_descent_neighbor_accuracy():
    knn_indices, _ = NNDescent(
        nn_data, "euclidean", {}, 10, random_state=np.random
    )._neighbor_graph

    tree = KDTree(nn_data)
    true_indices = tree.query(nn_data, 10, return_distance=False)

    num_correct = 0.0
    for i in range(nn_data.shape[0]):
        num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))

    percent_correct = num_correct / (nn_data.shape[0] * 10)
    assert_greater_equal(
        percent_correct,
        0.98,
        "NN-descent did not get 99% " "accuracy on nearest neighbors",
    ) 
開發者ID:lmcinnes,項目名稱:pynndescent,代碼行數:20,代碼來源:test_pynndescent_.py

示例9: test_angular_nn_descent_neighbor_accuracy

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import KDTree [as 別名]
def test_angular_nn_descent_neighbor_accuracy():
    knn_indices, _ = NNDescent(
        nn_data, "cosine", {}, 10, random_state=np.random
    )._neighbor_graph

    angular_data = normalize(nn_data, norm="l2")
    tree = KDTree(angular_data)
    true_indices = tree.query(angular_data, 10, return_distance=False)

    num_correct = 0.0
    for i in range(nn_data.shape[0]):
        num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))

    percent_correct = num_correct / (nn_data.shape[0] * 10)
    assert_greater_equal(
        percent_correct,
        0.98,
        "NN-descent did not get 99% " "accuracy on nearest neighbors",
    ) 
開發者ID:lmcinnes,項目名稱:pynndescent,代碼行數:21,代碼來源:test_pynndescent_.py

示例10: test_sparse_nn_descent_neighbor_accuracy

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import KDTree [as 別名]
def test_sparse_nn_descent_neighbor_accuracy():
    knn_indices, _ = NNDescent(
        sparse_nn_data, "euclidean", n_neighbors=20, random_state=None
    )._neighbor_graph

    tree = KDTree(sparse_nn_data.toarray())
    true_indices = tree.query(sparse_nn_data.toarray(), 10, return_distance=False)

    num_correct = 0.0
    for i in range(sparse_nn_data.shape[0]):
        num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))

    percent_correct = num_correct / (sparse_nn_data.shape[0] * 10)
    assert_greater_equal(
        percent_correct,
        0.85,
        "Sparse NN-descent did not get 95% " "accuracy on nearest neighbors",
    ) 
開發者ID:lmcinnes,項目名稱:pynndescent,代碼行數:20,代碼來源:test_pynndescent_.py

示例11: test_sparse_angular_nn_descent_neighbor_accuracy

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import KDTree [as 別名]
def test_sparse_angular_nn_descent_neighbor_accuracy():
    knn_indices, _ = NNDescent(
        sparse_nn_data, "cosine", {}, 20, random_state=None
    )._neighbor_graph

    angular_data = normalize(sparse_nn_data, norm="l2").toarray()
    tree = KDTree(angular_data)
    true_indices = tree.query(angular_data, 10, return_distance=False)

    num_correct = 0.0
    for i in range(sparse_nn_data.shape[0]):
        num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))

    percent_correct = num_correct / (sparse_nn_data.shape[0] * 10)
    assert_greater_equal(
        percent_correct,
        0.85,
        "Sparse angular NN-descent did not get 98% " "accuracy on nearest neighbors",
    ) 
開發者ID:lmcinnes,項目名稱:pynndescent,代碼行數:21,代碼來源:test_pynndescent_.py

示例12: test_nn_descent_query_accuracy

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import KDTree [as 別名]
def test_nn_descent_query_accuracy():
    nnd = NNDescent(nn_data[200:], "euclidean", n_neighbors=10, random_state=None)
    knn_indices, _ = nnd.query(nn_data[:200], k=10, epsilon=0.2)

    tree = KDTree(nn_data[200:])
    true_indices = tree.query(nn_data[:200], 10, return_distance=False)

    num_correct = 0.0
    for i in range(true_indices.shape[0]):
        num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))

    percent_correct = num_correct / (true_indices.shape[0] * 10)
    assert_greater_equal(
        percent_correct,
        0.95,
        "NN-descent query did not get 95% " "accuracy on nearest neighbors",
    )


# @SkipTest 
開發者ID:lmcinnes,項目名稱:pynndescent,代碼行數:22,代碼來源:test_pynndescent_.py

示例13: test_random_state_none

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import KDTree [as 別名]
def test_random_state_none():
    knn_indices, _ = NNDescent(
        nn_data, "euclidean", {}, 10, random_state=None
    )._neighbor_graph

    tree = KDTree(nn_data)
    true_indices = tree.query(nn_data, 10, return_distance=False)

    num_correct = 0.0
    for i in range(nn_data.shape[0]):
        num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))

    percent_correct = num_correct / (spatial_data.shape[0] * 10)
    assert_greater_equal(
        percent_correct,
        0.99,
        "NN-descent did not get 99% " "accuracy on nearest neighbors",
    ) 
開發者ID:lmcinnes,項目名稱:pynndescent,代碼行數:20,代碼來源:test_pynndescent_.py

示例14: neighbours

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import KDTree [as 別名]
def neighbours(self, word, size = 10):
        """
        Get nearest words with KDTree, ranking by cosine distance
        """
        word = word.strip()
        v = self.word_vec(word)
        [distances], [points] = self.kdt.query(array([v]), k = size, return_distance = True)
        assert len(distances) == len(points), "distances and points should be in same shape."
        words, scores = [], {}
        for (x,y) in zip(points, distances):
            w = self.index2word[x]
            if w == word: s = 1.0
            else: s = cosine(v, self.syn0[x])
            if s < 0: s = abs(s)
            words.append(w)
            scores[w] = min(s, 1.0)
        for x in sorted(words, key=scores.get, reverse=True):
            yield x, scores[x] 
開發者ID:huyingxi,項目名稱:Synonyms,代碼行數:20,代碼來源:word2vec.py

示例15: construct_query_dict

# 需要導入模塊: from sklearn import neighbors [as 別名]
# 或者: from sklearn.neighbors import KDTree [as 別名]
def construct_query_dict(df_centroids, filename):
	tree = KDTree(df_centroids[['northing','easting']])
	ind_nn = tree.query_radius(df_centroids[['northing','easting']],r=10)
	ind_r = tree.query_radius(df_centroids[['northing','easting']], r=50)
	queries={}
	for i in range(len(ind_nn)):
		query=df_centroids.iloc[i]["file"]
		positives=np.setdiff1d(ind_nn[i],[i]).tolist()
		negatives=np.setdiff1d(df_centroids.index.values.tolist(),ind_r[i]).tolist()
		random.shuffle(negatives)
		queries[i]={"query":query,"positives":positives,"negatives":negatives}

	with open(filename, 'wb') as handle:
	    pickle.dump(queries, handle, protocol=pickle.HIGHEST_PROTOCOL)

	print("Done ", filename)


####Initialize pandas DataFrame 
開發者ID:mikacuy,項目名稱:pointnetvlad,代碼行數:21,代碼來源:generate_training_tuples_baseline.py


注:本文中的sklearn.neighbors.KDTree方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。