本文整理匯總了Python中sklearn.naive_bayes.GaussianNB方法的典型用法代碼示例。如果您正苦於以下問題:Python naive_bayes.GaussianNB方法的具體用法?Python naive_bayes.GaussianNB怎麽用?Python naive_bayes.GaussianNB使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.naive_bayes
的用法示例。
在下文中一共展示了naive_bayes.GaussianNB方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_naivebayes_breastcancer_cont
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import GaussianNB [as 別名]
def test_naivebayes_breastcancer_cont(self):
# python -m unittest tests_classification.Tests_Classification.test_naivebayes_breastcancer_cont
from sklearn.naive_bayes import GaussianNB
from discomll.classification import naivebayes
x_train, y_train, x_test, y_test = datasets.breastcancer_cont(replication=1)
train_data, test_data = datasets.breastcancer_cont_discomll(replication=1)
clf = GaussianNB()
probs_log1 = clf.fit(x_train, y_train).predict_proba(x_test)
fitmodel_url = naivebayes.fit(train_data)
prediction_url = naivebayes.predict(test_data, fitmodel_url)
probs_log2 = [v[1] for _, v in result_iterator(prediction_url)]
self.assertTrue(np.allclose(probs_log1, probs_log2, atol=1e-8))
示例2: test_different_results
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import GaussianNB [as 別名]
def test_different_results(self):
from sklearn.naive_bayes import GaussianNB as sk_nb
from sklearn import datasets
global_seed(12345)
dataset = datasets.load_iris()
x_train, x_test, y_train, y_test = train_test_split(dataset.data, dataset.target, test_size=.2)
bounds = ([4.3, 2.0, 1.0, 0.1], [7.9, 4.4, 6.9, 2.5])
clf_dp = GaussianNB(epsilon=1.0, bounds=bounds)
clf_non_private = sk_nb()
for clf in [clf_dp, clf_non_private]:
clf.fit(x_train, y_train)
same_prediction = clf_dp.predict(x_test) == clf_non_private.predict(x_test)
self.assertFalse(np.all(same_prediction))
示例3: test_22_gaussian_nb
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import GaussianNB [as 別名]
def test_22_gaussian_nb(self):
print("\ntest 22 (GaussianNB without preprocessing) [binary-class]\n")
X, X_test, y, features, target, test_file = self.data_utility.get_data_for_binary_classification()
model = GaussianNB()
pipeline_obj = Pipeline([
("model", model)
])
pipeline_obj.fit(X,y)
file_name = 'test22sklearn.pmml'
skl_to_pmml(pipeline_obj, features, target, file_name)
model_name = self.adapa_utility.upload_to_zserver(file_name)
predictions, probabilities = self.adapa_utility.score_in_zserver(model_name, test_file)
model_pred = pipeline_obj.predict(X_test)
model_prob = pipeline_obj.predict_proba(X_test)
self.assertEqual(self.adapa_utility.compare_predictions(predictions, model_pred), True)
self.assertEqual(self.adapa_utility.compare_probability(probabilities, model_prob), True)
示例4: test_23_gaussian_nb
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import GaussianNB [as 別名]
def test_23_gaussian_nb(self):
print("\ntest 23 (GaussianNB without preprocessing) [multi-class]\n")
X, X_test, y, features, target, test_file = self.data_utility.get_data_for_multi_class_classification()
model = GaussianNB()
pipeline_obj = Pipeline([
("model", model)
])
pipeline_obj.fit(X,y)
file_name = 'test23sklearn.pmml'
skl_to_pmml(pipeline_obj, features, target, file_name)
model_name = self.adapa_utility.upload_to_zserver(file_name)
predictions, probabilities = self.adapa_utility.score_in_zserver(model_name, test_file)
model_pred = pipeline_obj.predict(X_test)
model_prob = pipeline_obj.predict_proba(X_test)
self.assertEqual(self.adapa_utility.compare_predictions(predictions, model_pred), True)
self.assertEqual(self.adapa_utility.compare_probability(probabilities, model_prob), True)
示例5: test_24_gaussian_nb
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import GaussianNB [as 別名]
def test_24_gaussian_nb(self):
print("\ntest 24 (GaussianNB with preprocessing) [multi-class]\n")
X, X_test, y, features, target, test_file = self.data_utility.get_data_for_multi_class_classification()
model = GaussianNB()
pipeline_obj = Pipeline([
('scaler', StandardScaler()),
("model", model)
])
pipeline_obj.fit(X,y)
file_name = 'test24sklearn.pmml'
skl_to_pmml(pipeline_obj, features, target, file_name)
model_name = self.adapa_utility.upload_to_zserver(file_name)
predictions, probabilities = self.adapa_utility.score_in_zserver(model_name, test_file)
model_pred = pipeline_obj.predict(X_test)
model_prob = pipeline_obj.predict_proba(X_test)
self.assertEqual(self.adapa_utility.compare_predictions(predictions, model_pred), True)
self.assertEqual(self.adapa_utility.compare_probability(probabilities, model_prob), True)
示例6: __init__
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import GaussianNB [as 別名]
def __init__(self, classifier=FaceClassifierModels.DEFAULT):
self._clf = None
if classifier == FaceClassifierModels.LINEAR_SVM:
self._clf = SVC(C=1.0, kernel="linear", probability=True)
elif classifier == FaceClassifierModels.NAIVE_BAYES:
self._clf = GaussianNB()
elif classifier == FaceClassifierModels.RBF_SVM:
self._clf = SVC(C=1, kernel='rbf', probability=True, gamma=2)
elif classifier == FaceClassifierModels.NEAREST_NEIGHBORS:
self._clf = KNeighborsClassifier(1)
elif classifier == FaceClassifierModels.DECISION_TREE:
self._clf = DecisionTreeClassifier(max_depth=5)
elif classifier == FaceClassifierModels.RANDOM_FOREST:
self._clf = RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1)
elif classifier == FaceClassifierModels.NEURAL_NET:
self._clf = MLPClassifier(alpha=1)
elif classifier == FaceClassifierModels.ADABOOST:
self._clf = AdaBoostClassifier()
elif classifier == FaceClassifierModels.QDA:
self._clf = QuadraticDiscriminantAnalysis()
print("classifier={}".format(FaceClassifierModels(classifier)))
示例7: getModels
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import GaussianNB [as 別名]
def getModels():
result = []
result.append("LinearRegression")
result.append("BayesianRidge")
result.append("ARDRegression")
result.append("ElasticNet")
result.append("HuberRegressor")
result.append("Lasso")
result.append("LassoLars")
result.append("Rigid")
result.append("SGDRegressor")
result.append("SVR")
result.append("MLPClassifier")
result.append("KNeighborsClassifier")
result.append("SVC")
result.append("GaussianProcessClassifier")
result.append("DecisionTreeClassifier")
result.append("RandomForestClassifier")
result.append("AdaBoostClassifier")
result.append("GaussianNB")
result.append("LogisticRegression")
result.append("QuadraticDiscriminantAnalysis")
return result
示例8: Faceidentifier
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import GaussianNB [as 別名]
def Faceidentifier( trainDataSimplified,trainLabel,testDataSimplified,testLabel): #three different kinds of classifers
print("=====================================")
print("GaussianNB")
clf1 = GaussianNB()
clf1.fit(trainDataSimplified,np.ravel(trainLabel))
predictTestLabel1 = clf1.predict(testDataSimplified)
show_accuracy(predictTestLabel1,testLabel)
print()
print("SVC")
clf3 = SVC(C=8.0)
clf3.fit(trainDataSimplified,np.ravel(trainLabel))
predictTestLabel3 = clf3.predict(testDataSimplified)
show_accuracy(predictTestLabel3,testLabel)
print()
print("LogisticRegression")
clf4 = LogisticRegression()
clf4.fit(trainDataSimplified,np.ravel(trainLabel))
predictTestLabel4 = clf4.predict(testDataSimplified)
show_accuracy(predictTestLabel4,testLabel)
print()
print("=====================================")
示例9: __init__
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import GaussianNB [as 別名]
def __init__(self, distributions, weights=None, **kwargs):
self.models = []
for dist in distributions:
dist = NaiveBayesianDistribution.from_string(dist)
if dist is NaiveBayesianDistribution.GAUSSIAN:
model = nb.GaussianNB(**kwargs)
elif dist is NaiveBayesianDistribution.MULTINOMIAL:
model = nb.MultinomialNB(**kwargs)
elif dist is NaiveBayesianDistribution.BERNOULLI:
model = nb.BernoulliNB(**kwargs)
else:
raise ValueError('Unknown distribution: {}.'.format(dist))
kwargs['fit_prior'] = False # Except the first model.
self.models.append(model)
self.weights = weights
示例10: test_smoke
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import GaussianNB [as 別名]
def test_smoke():
a = nb.GaussianNB()
b = nb_.GaussianNB()
a.fit(X, y)
X_ = X.compute()
y_ = y.compute()
b.fit(X_, y_)
assert_eq(a.class_prior_.compute(), b.class_prior_)
assert_eq(a.class_count_.compute(), b.class_count_)
assert_eq(a.theta_.compute(), b.theta_)
assert_eq(a.sigma_.compute(), b.sigma_)
assert_eq(a.predict_proba(X).compute(), b.predict_proba(X_))
assert_eq(a.predict(X).compute(), b.predict(X_))
assert_eq(a.predict_log_proba(X).compute(), b.predict_log_proba(X_))
示例11: define_clfs_params
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import GaussianNB [as 別名]
def define_clfs_params(self):
'''
Defines all relevant parameters and classes for classfier objects.
Edit these if you wish to change parameters.
'''
# These are the classifiers
self.clfs = {
'RF': RandomForestClassifier(n_estimators = 50, n_jobs = -1),
'ET': ExtraTreesClassifier(n_estimators = 10, n_jobs = -1, criterion = 'entropy'),
'AB': AdaBoostClassifier(DecisionTreeClassifier(max_depth = [1, 5, 10, 15]), algorithm = "SAMME", n_estimators = 200),
'LR': LogisticRegression(penalty = 'l1', C = 1e5),
'SVM': svm.SVC(kernel = 'linear', probability = True, random_state = 0),
'GB': GradientBoostingClassifier(learning_rate = 0.05, subsample = 0.5, max_depth = 6, n_estimators = 10),
'NB': GaussianNB(),
'DT': DecisionTreeClassifier(),
'SGD': SGDClassifier(loss = 'log', penalty = 'l2'),
'KNN': KNeighborsClassifier(n_neighbors = 3)
}
# These are the parameters which will be run through
self.params = {
'RF':{'n_estimators': [1,10,100,1000], 'max_depth': [10, 15,20,30,40,50,60,70,100], 'max_features': ['sqrt','log2'],'min_samples_split': [2,5,10], 'random_state': [1]},
'LR': {'penalty': ['l1','l2'], 'C': [0.00001,0.0001,0.001,0.01,0.1,1,10], 'random_state': [1]},
'SGD': {'loss': ['log'], 'penalty': ['l2','l1','elasticnet'], 'random_state': [1]},
'ET': {'n_estimators': [1,10,100,1000], 'criterion' : ['gini', 'entropy'], 'max_depth': [1,3,5,10,15], 'max_features': ['sqrt','log2'],'min_samples_split': [2,5,10], 'random_state': [1]},
'AB': {'algorithm': ['SAMME', 'SAMME.R'], 'n_estimators': [1,10,100,1000], 'random_state': [1]},
'GB': {'n_estimators': [1,10,100,1000], 'learning_rate' : [0.001,0.01,0.05,0.1,0.5],'subsample' : [0.1,0.5,1.0], 'max_depth': [1,3,5,10,20,50,100], 'random_state': [1]},
'NB': {},
'DT': {'criterion': ['gini', 'entropy'], 'max_depth': [1,2,15,20,30,40,50], 'max_features': ['sqrt','log2'],'min_samples_split': [2,5,10], 'random_state': [1]},
'SVM' :{'C' :[0.00001,0.0001,0.001,0.01,0.1,1,10],'kernel':['linear'], 'random_state': [1]},
'KNN' :{'n_neighbors': [1,5,10,25,50,100],'weights': ['uniform','distance'],'algorithm': ['auto','ball_tree','kd_tree']}
}
示例12: naive_bayes_classifier
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import GaussianNB [as 別名]
def naive_bayes_classifier(x_train, y, x_predict):
gnb = GaussianNB()
gnb.fit(x_train, y)
prediction = gnb.predict(x_predict)
return prediction
示例13: naive_bayes_classifier
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import GaussianNB [as 別名]
def naive_bayes_classifier(df_question_train, df_question_class):
gnb = GaussianNB()
gnb.fit(df_question_train, df_question_class)
logger.info("Gaussian Naive Bayes: {0}".format(gnb))
return gnb
示例14: script_run
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import GaussianNB [as 別名]
def script_run():
# 產生keyword
kw_list = build_key_word("train.txt")
# 保存數據
fp = open("new_word.txt", encoding="utf-8", mode="w")
for word in kw_list:
fp.write(word + "\n")
fp.close()
# kw_list = load_key_words("word.txt")
feature, label = get_feature("train.txt", kw_list)
gnb = GaussianNB()
gnb = gnb.fit(feature, label)
joblib.dump(gnb, 'model/gnb.model')
print("訓練完成")
# print(feature,label)
示例15: NB
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import GaussianNB [as 別名]
def NB():
loader = MnistLoader(flatten=True, data_path='../data', var_per=None)
model = GaussianNB()
model.fit(loader.data_train, loader.label_train)
print('model trained')
res = model.score(loader.data_test, loader.label_test)
print(res)
return res