本文整理匯總了Python中sklearn.naive_bayes.BernoulliNB方法的典型用法代碼示例。如果您正苦於以下問題:Python naive_bayes.BernoulliNB方法的具體用法?Python naive_bayes.BernoulliNB怎麽用?Python naive_bayes.BernoulliNB使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.naive_bayes
的用法示例。
在下文中一共展示了naive_bayes.BernoulliNB方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_feature_log_prob_bnb
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import BernoulliNB [as 別名]
def test_feature_log_prob_bnb():
# Test for issue #4268.
# Tests that the feature log prob value computed by BernoulliNB when
# alpha=1.0 is equal to the expression given in Manning, Raghavan,
# and Schuetze's "Introduction to Information Retrieval" book:
# https://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html
X = np.array([[0, 0, 0], [1, 1, 0], [0, 1, 0], [1, 0, 1], [0, 1, 0]])
Y = np.array([0, 0, 1, 2, 2])
# Fit Bernoulli NB w/ alpha = 1.0
clf = BernoulliNB(alpha=1.0)
clf.fit(X, Y)
# Manually form the (log) numerator and denominator that
# constitute P(feature presence | class)
num = np.log(clf.feature_count_ + 1.0)
denom = np.tile(np.log(clf.class_count_ + 2.0), (X.shape[1], 1)).T
# Check manual estimate matches
assert_array_almost_equal(clf.feature_log_prob_, (num - denom))
示例2: __init__
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import BernoulliNB [as 別名]
def __init__(self, distributions, weights=None, **kwargs):
self.models = []
for dist in distributions:
dist = NaiveBayesianDistribution.from_string(dist)
if dist is NaiveBayesianDistribution.GAUSSIAN:
model = nb.GaussianNB(**kwargs)
elif dist is NaiveBayesianDistribution.MULTINOMIAL:
model = nb.MultinomialNB(**kwargs)
elif dist is NaiveBayesianDistribution.BERNOULLI:
model = nb.BernoulliNB(**kwargs)
else:
raise ValueError('Unknown distribution: {}.'.format(dist))
kwargs['fit_prior'] = False # Except the first model.
self.models.append(model)
self.weights = weights
示例3: test_discretenb_pickle
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import BernoulliNB [as 別名]
def test_discretenb_pickle():
# Test picklability of discrete naive Bayes classifiers
for cls in [BernoulliNB, MultinomialNB, GaussianNB]:
clf = cls().fit(X2, y2)
y_pred = clf.predict(X2)
store = BytesIO()
pickle.dump(clf, store)
clf = pickle.load(BytesIO(store.getvalue()))
assert_array_equal(y_pred, clf.predict(X2))
if cls is not GaussianNB:
# TODO re-enable me when partial_fit is implemented for GaussianNB
# Test pickling of estimator trained with partial_fit
clf2 = cls().partial_fit(X2[:3], y2[:3], classes=np.unique(y2))
clf2.partial_fit(X2[3:], y2[3:])
store = BytesIO()
pickle.dump(clf2, store)
clf2 = pickle.load(BytesIO(store.getvalue()))
assert_array_equal(y_pred, clf2.predict(X2))
示例4: test_input_check_partial_fit
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import BernoulliNB [as 別名]
def test_input_check_partial_fit():
for cls in [BernoulliNB, MultinomialNB]:
# check shape consistency
assert_raises(ValueError, cls().partial_fit, X2, y2[:-1],
classes=np.unique(y2))
# classes is required for first call to partial fit
assert_raises(ValueError, cls().partial_fit, X2, y2)
# check consistency of consecutive classes values
clf = cls()
clf.partial_fit(X2, y2, classes=np.unique(y2))
assert_raises(ValueError, clf.partial_fit, X2, y2,
classes=np.arange(42))
# check consistency of input shape for partial_fit
assert_raises(ValueError, clf.partial_fit, X2[:, :-1], y2)
# check consistency of input shape for predict
assert_raises(ValueError, clf.predict, X2[:, :-1])
示例5: test_discretenb_provide_prior_with_partial_fit
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import BernoulliNB [as 別名]
def test_discretenb_provide_prior_with_partial_fit():
# Test whether discrete NB classes use provided prior
# when using partial_fit
iris = load_iris()
iris_data1, iris_data2, iris_target1, iris_target2 = train_test_split(
iris.data, iris.target, test_size=0.4, random_state=415)
for cls in [BernoulliNB, MultinomialNB]:
for prior in [None, [0.3, 0.3, 0.4]]:
clf_full = cls(class_prior=prior)
clf_full.fit(iris.data, iris.target)
clf_partial = cls(class_prior=prior)
clf_partial.partial_fit(iris_data1, iris_target1,
classes=[0, 1, 2])
clf_partial.partial_fit(iris_data2, iris_target2)
assert_array_almost_equal(clf_full.class_log_prior_,
clf_partial.class_log_prior_)
示例6: test_feature_log_prob_bnb
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import BernoulliNB [as 別名]
def test_feature_log_prob_bnb():
# Test for issue #4268.
# Tests that the feature log prob value computed by BernoulliNB when
# alpha=1.0 is equal to the expression given in Manning, Raghavan,
# and Schuetze's "Introduction to Information Retrieval" book:
# http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html
X = np.array([[0, 0, 0], [1, 1, 0], [0, 1, 0], [1, 0, 1], [0, 1, 0]])
Y = np.array([0, 0, 1, 2, 2])
# Fit Bernoulli NB w/ alpha = 1.0
clf = BernoulliNB(alpha=1.0)
clf.fit(X, Y)
# Manually form the (log) numerator and denominator that
# constitute P(feature presence | class)
num = np.log(clf.feature_count_ + 1.0)
denom = np.tile(np.log(clf.class_count_ + 2.0), (X.shape[1], 1)).T
# Check manual estimate matches
assert_array_almost_equal(clf.feature_log_prob_, (num - denom))
示例7: test_discrete_prior
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import BernoulliNB [as 別名]
def test_discrete_prior():
# Test whether class priors are properly set.
for cls in [BernoulliNB, MultinomialNB]:
clf = cls().fit(X2, y2)
assert_array_almost_equal(np.log(np.array([2, 2, 2]) / 6.0),
clf.class_log_prior_, 8)
示例8: test_discretenb_predict_proba
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import BernoulliNB [as 別名]
def test_discretenb_predict_proba():
# Test discrete NB classes' probability scores
# The 100s below distinguish Bernoulli from multinomial.
# FIXME: write a test to show this.
X_bernoulli = [[1, 100, 0], [0, 1, 0], [0, 100, 1]]
X_multinomial = [[0, 1], [1, 3], [4, 0]]
# test binary case (1-d output)
y = [0, 0, 2] # 2 is regression test for binary case, 02e673
for cls, X in zip([BernoulliNB, MultinomialNB],
[X_bernoulli, X_multinomial]):
clf = cls().fit(X, y)
assert_equal(clf.predict(X[-1:]), 2)
assert_equal(clf.predict_proba([X[0]]).shape, (1, 2))
assert_array_almost_equal(clf.predict_proba(X[:2]).sum(axis=1),
np.array([1., 1.]), 6)
# test multiclass case (2-d output, must sum to one)
y = [0, 1, 2]
for cls, X in zip([BernoulliNB, MultinomialNB],
[X_bernoulli, X_multinomial]):
clf = cls().fit(X, y)
assert_equal(clf.predict_proba(X[0:1]).shape, (1, 3))
assert_equal(clf.predict_proba(X[:2]).shape, (2, 3))
assert_almost_equal(np.sum(clf.predict_proba([X[1]])), 1)
assert_almost_equal(np.sum(clf.predict_proba([X[-1]])), 1)
assert_almost_equal(np.sum(np.exp(clf.class_log_prior_)), 1)
assert_almost_equal(np.sum(np.exp(clf.intercept_)), 1)
示例9: test_coef_intercept_shape
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import BernoulliNB [as 別名]
def test_coef_intercept_shape():
# coef_ and intercept_ should have shapes as in other linear models.
# Non-regression test for issue #2127.
X = [[1, 0, 0], [1, 1, 1]]
y = [1, 2] # binary classification
for clf in [MultinomialNB(), BernoulliNB()]:
clf.fit(X, y)
assert_equal(clf.coef_.shape, (1, 3))
assert_equal(clf.intercept_.shape, (1,))
示例10: test_check_accuracy_on_digits
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import BernoulliNB [as 別名]
def test_check_accuracy_on_digits():
# Non regression test to make sure that any further refactoring / optim
# of the NB models do not harm the performance on a slightly non-linearly
# separable dataset
digits = load_digits()
X, y = digits.data, digits.target
binary_3v8 = np.logical_or(digits.target == 3, digits.target == 8)
X_3v8, y_3v8 = X[binary_3v8], y[binary_3v8]
# Multinomial NB
scores = cross_val_score(MultinomialNB(alpha=10), X, y, cv=10)
assert_greater(scores.mean(), 0.86)
scores = cross_val_score(MultinomialNB(alpha=10), X_3v8, y_3v8, cv=10)
assert_greater(scores.mean(), 0.94)
# Bernoulli NB
scores = cross_val_score(BernoulliNB(alpha=10), X > 4, y, cv=10)
assert_greater(scores.mean(), 0.83)
scores = cross_val_score(BernoulliNB(alpha=10), X_3v8 > 4, y_3v8, cv=10)
assert_greater(scores.mean(), 0.92)
# Gaussian NB
scores = cross_val_score(GaussianNB(), X, y, cv=10)
assert_greater(scores.mean(), 0.77)
scores = cross_val_score(GaussianNB(var_smoothing=0.1), X, y, cv=10)
assert_greater(scores.mean(), 0.89)
scores = cross_val_score(GaussianNB(), X_3v8, y_3v8, cv=10)
assert_greater(scores.mean(), 0.86)
示例11: __init__
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import BernoulliNB [as 別名]
def __init__(self, info, verbose=True, debug_mode=False):
self.label_num=info['label_num']
self.target_num=info['target_num']
self.task = info['task']
self.metric = info['metric']
self.postprocessor = None
#self.postprocessor = MultiLabelEnsemble(LogisticRegression(), balance=True) # To calibrate proba
self.postprocessor = MultiLabelEnsemble(LogisticRegression(), balance=False) # To calibrate proba
if debug_mode>=2:
self.name = "RandomPredictor"
self.model = RandomPredictor(self.target_num)
self.predict_method = self.model.predict_proba
return
if info['task']=='regression':
if info['is_sparse']==True:
self.name = "BaggingRidgeRegressor"
self.model = BaggingRegressor(base_estimator=Ridge(), n_estimators=1, verbose=verbose) # unfortunately, no warm start...
else:
self.name = "GradientBoostingRegressor"
self.model = GradientBoostingRegressor(n_estimators=1, verbose=verbose, warm_start = True)
self.predict_method = self.model.predict # Always predict probabilities
else:
if info['has_categorical']: # Out of lazziness, we do not convert categorical variables...
self.name = "RandomForestClassifier"
self.model = RandomForestClassifier(n_estimators=1, verbose=verbose) # unfortunately, no warm start...
elif info['is_sparse']:
self.name = "BaggingNBClassifier"
self.model = BaggingClassifier(base_estimator=BernoulliNB(), n_estimators=1, verbose=verbose) # unfortunately, no warm start...
else:
self.name = "GradientBoostingClassifier"
self.model = eval(self.name + "(n_estimators=1, verbose=" + str(verbose) + ", min_samples_split=10, random_state=1, warm_start = True)")
if info['task']=='multilabel.classification':
self.model = MultiLabelEnsemble(self.model)
self.predict_method = self.model.predict_proba
示例12: __init__
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import BernoulliNB [as 別名]
def __init__(self, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None):
self._hyperparams = {
'alpha': alpha,
'binarize': binarize,
'fit_prior': fit_prior,
'class_prior': class_prior}
self._wrapped_model = Op(**self._hyperparams)
示例13: test_export_random_ind
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import BernoulliNB [as 別名]
def test_export_random_ind():
"""Assert that the TPOTClassifier can generate the same pipeline export with random seed of 39."""
tpot_obj = TPOTClassifier(random_state=39, config_dict="TPOT light")
tpot_obj._fit_init()
tpot_obj._pbar = tqdm(total=1, disable=True)
pipeline = tpot_obj._toolbox.individual()
expected_code = """import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import BernoulliNB
# NOTE: Make sure that the outcome column is labeled 'target' in the data file
tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64)
features = tpot_data.drop('target', axis=1)
training_features, testing_features, training_target, testing_target = \\
train_test_split(features, tpot_data['target'], random_state=39)
exported_pipeline = BernoulliNB(alpha=1.0, fit_prior=False)
# Fix random state in exported estimator
if hasattr(exported_pipeline, 'random_state'):
setattr(exported_pipeline, 'random_state', 39)
exported_pipeline.fit(training_features, training_target)
results = exported_pipeline.predict(testing_features)
"""
exported_code = export_pipeline(pipeline, tpot_obj.operators, tpot_obj._pset, random_state=tpot_obj.random_state)
assert expected_code == exported_code
示例14: __init__
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import BernoulliNB [as 別名]
def __init__(self, options):
self.handle_options(options)
out_params = convert_params(
options.get('params', {}),
floats=['alpha', 'binarize'],
bools=['fit_prior'],
)
self.estimator = _BernoulliNB(**out_params)
示例15: test_BernoulliNB
# 需要導入模塊: from sklearn import naive_bayes [as 別名]
# 或者: from sklearn.naive_bayes import BernoulliNB [as 別名]
def test_BernoulliNB(self):
BernoulliNB_Algo.register_codecs()
self.classifier_util(BernoulliNB)