當前位置: 首頁>>代碼示例>>Python>>正文


Python multioutput.MultiOutputRegressor方法代碼示例

本文整理匯總了Python中sklearn.multioutput.MultiOutputRegressor方法的典型用法代碼示例。如果您正苦於以下問題:Python multioutput.MultiOutputRegressor方法的具體用法?Python multioutput.MultiOutputRegressor怎麽用?Python multioutput.MultiOutputRegressor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.multioutput的用法示例。


在下文中一共展示了multioutput.MultiOutputRegressor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: fit

# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputRegressor [as 別名]
def fit(self, x, y=None):
        if y is not None:
            xdot = y
        else:
            xdot = self.derivative.transform(x)

        if self.operators is not None:
            feature_transformer = SymbolicFeatures(
                exponents=np.linspace(1, self.degree, self.degree), operators=self.operators
            )
        else:
            feature_transformer = PolynomialFeatures(degree=self.degree, include_bias=False)

        steps = [
            ("features", feature_transformer),
            ("model", STRidge(alpha=self.alpha, threshold=self.threshold, **self.kw)),
        ]
        self.model = MultiOutputRegressor(Pipeline(steps), n_jobs=self.n_jobs)
        self.model.fit(x, xdot)

        self.n_input_features_ = self.model.estimators_[0].steps[0][1].n_input_features_
        self.n_output_features_ = self.model.estimators_[0].steps[0][1].n_output_features_
        return self 
開發者ID:Ohjeah,項目名稱:sparsereg,代碼行數:25,代碼來源:sindy.py

示例2: test_diff_detector_require_thresholds

# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputRegressor [as 別名]
def test_diff_detector_require_thresholds(require_threshold: bool):
    """
    Should fail if requiring thresholds, but not calling cross_validate
    """
    X = pd.DataFrame(np.random.random((100, 5)))
    y = pd.DataFrame(np.random.random((100, 2)))

    model = DiffBasedAnomalyDetector(
        base_estimator=MultiOutputRegressor(LinearRegression()),
        require_thresholds=require_threshold,
    )

    model.fit(X, y)

    if require_threshold:
        # FAIL: Forgot to call .cross_validate to calculate thresholds.
        with pytest.raises(AttributeError):
            model.anomaly(X, y)

        model.cross_validate(X=X, y=y)
        model.anomaly(X, y)
    else:
        # thresholds not required
        model.anomaly(X, y) 
開發者ID:equinor,項目名稱:gordo,代碼行數:26,代碼來源:test_anomaly_detectors.py

示例3: test_multi_target_regression

# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputRegressor [as 別名]
def test_multi_target_regression():
    X, y = datasets.make_regression(n_targets=3)
    X_train, y_train = X[:50], y[:50]
    X_test, y_test = X[50:], y[50:]

    references = np.zeros_like(y_test)
    for n in range(3):
        rgr = GradientBoostingRegressor(random_state=0)
        rgr.fit(X_train, y_train[:, n])
        references[:, n] = rgr.predict(X_test)

    rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    rgr.fit(X_train, y_train)
    y_pred = rgr.predict(X_test)

    assert_almost_equal(references, y_pred)


# 0.23. warning about tol not having its correct default value. 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:21,代碼來源:test_multioutput.py

示例4: test_multi_target_regression_partial_fit

# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputRegressor [as 別名]
def test_multi_target_regression_partial_fit():
    X, y = datasets.make_regression(n_targets=3)
    X_train, y_train = X[:50], y[:50]
    X_test, y_test = X[50:], y[50:]

    references = np.zeros_like(y_test)
    half_index = 25
    for n in range(3):
        sgr = SGDRegressor(random_state=0, max_iter=5)
        sgr.partial_fit(X_train[:half_index], y_train[:half_index, n])
        sgr.partial_fit(X_train[half_index:], y_train[half_index:, n])
        references[:, n] = sgr.predict(X_test)

    sgr = MultiOutputRegressor(SGDRegressor(random_state=0, max_iter=5))

    sgr.partial_fit(X_train[:half_index], y_train[:half_index])
    sgr.partial_fit(X_train[half_index:], y_train[half_index:])

    y_pred = sgr.predict(X_test)
    assert_almost_equal(references, y_pred)
    assert not hasattr(MultiOutputRegressor(Lasso), 'partial_fit') 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:23,代碼來源:test_multioutput.py

示例5: test_multi_target_sample_weights

# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputRegressor [as 別名]
def test_multi_target_sample_weights():
    # weighted regressor
    Xw = [[1, 2, 3], [4, 5, 6]]
    yw = [[3.141, 2.718], [2.718, 3.141]]
    w = [2., 1.]
    rgr_w = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    rgr_w.fit(Xw, yw, w)

    # unweighted, but with repeated samples
    X = [[1, 2, 3], [1, 2, 3], [4, 5, 6]]
    y = [[3.141, 2.718], [3.141, 2.718], [2.718, 3.141]]
    rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    rgr.fit(X, y)

    X_test = [[1.5, 2.5, 3.5], [3.5, 4.5, 5.5]]
    assert_almost_equal(rgr.predict(X_test), rgr_w.predict(X_test))


# Import the data 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:21,代碼來源:test_multioutput.py

示例6: base_estimator

# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputRegressor [as 別名]
def base_estimator(self, value):
        # Build `base_estimator` if string given
        if isinstance(value, str):
            value = cook_estimator(
                value, space=self.space, random_state=self.rng.randint(0, np.iinfo(np.int32).max)
            )

        # Check if regressor
        if not is_regressor(value) and value is not None:
            raise ValueError(f"`base_estimator` must be a regressor. Got {value}")

        # Treat per second acquisition function specially
        is_multi_regressor = isinstance(value, MultiOutputRegressor)
        if self.acq_func.endswith("ps") and not is_multi_regressor:
            value = MultiOutputRegressor(value)

        self._base_estimator = value 
開發者ID:HunterMcGushion,項目名稱:hyperparameter_hunter,代碼行數:19,代碼來源:engine.py

示例7: test_multi_target_regression

# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputRegressor [as 別名]
def test_multi_target_regression():
    X, y = datasets.make_regression(n_targets=3)
    X_train, y_train = X[:50], y[:50]
    X_test, y_test = X[50:], y[50:]

    references = np.zeros_like(y_test)
    for n in range(3):
        rgr = GradientBoostingRegressor(random_state=0)
        rgr.fit(X_train, y_train[:, n])
        references[:, n] = rgr.predict(X_test)

    rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    rgr.fit(X_train, y_train)
    y_pred = rgr.predict(X_test)

    assert_almost_equal(references, y_pred) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:18,代碼來源:test_multioutput.py

示例8: test_multi_target_regression_partial_fit

# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputRegressor [as 別名]
def test_multi_target_regression_partial_fit():
    X, y = datasets.make_regression(n_targets=3)
    X_train, y_train = X[:50], y[:50]
    X_test, y_test = X[50:], y[50:]

    references = np.zeros_like(y_test)
    half_index = 25
    for n in range(3):
        sgr = SGDRegressor(random_state=0, max_iter=5)
        sgr.partial_fit(X_train[:half_index], y_train[:half_index, n])
        sgr.partial_fit(X_train[half_index:], y_train[half_index:, n])
        references[:, n] = sgr.predict(X_test)

    sgr = MultiOutputRegressor(SGDRegressor(random_state=0, max_iter=5))

    sgr.partial_fit(X_train[:half_index], y_train[:half_index])
    sgr.partial_fit(X_train[half_index:], y_train[half_index:])

    y_pred = sgr.predict(X_test)
    assert_almost_equal(references, y_pred)
    assert_false(hasattr(MultiOutputRegressor(Lasso), 'partial_fit')) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:23,代碼來源:test_multioutput.py

示例9: test_MultiOutputRegressor

# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputRegressor [as 別名]
def test_MultiOutputRegressor():
    mor = MultiOutputRegressor(
        estimator=susi.SOMRegressor(n_jobs=2),
        n_jobs=2
    )
    mor.fit(X, y) 
開發者ID:felixriese,項目名稱:susi,代碼行數:8,代碼來源:test_MultiOutput.py

示例10: test_load_from_definition

# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputRegressor [as 別名]
def test_load_from_definition(definition):
    """
    Ensure serializer can load models which take other models as parameters.
    """
    X, y = np.random.random((10, 10)), np.random.random((10, 2))
    definition = yaml.load(definition, Loader=yaml.SafeLoader)
    model = serializer.from_definition(definition)
    assert isinstance(model, MultiOutputRegressor)
    model.fit(X, y)
    model.predict(X) 
開發者ID:equinor,項目名稱:gordo,代碼行數:12,代碼來源:test_serializer_from_definition.py

示例11: test_model_builder_metrics_list

# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputRegressor [as 別名]
def test_model_builder_metrics_list(metrics_: Optional[List[str]]):
    model_config = {
        "sklearn.multioutput.MultiOutputRegressor": {
            "estimator": "sklearn.linear_model.LinearRegression"
        }
    }
    data_config = get_random_data()

    evaluation_config: Dict[str, Any] = {"cv_mode": "full_build"}
    if metrics_:
        evaluation_config.update({"metrics": metrics_})

    machine = Machine(
        name="model-name",
        dataset=data_config,
        model=model_config,
        evaluation=evaluation_config,
        project_name="test",
    )
    _model, machine = ModelBuilder(machine).build()

    expected_metrics = metrics_ or [
        "sklearn.metrics.explained_variance_score",
        "sklearn.metrics.r2_score",
        "sklearn.metrics.mean_squared_error",
        "sklearn.metrics.mean_absolute_error",
    ]

    assert all(
        metric.split(".")[-1].replace("_", "-")
        in machine.metadata.build_metadata.model.cross_validation.scores
        for metric in expected_metrics
    ) 
開發者ID:equinor,項目名稱:gordo,代碼行數:35,代碼來源:test_builder.py

示例12: test_n_splits_from_config

# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputRegressor [as 別名]
def test_n_splits_from_config(mocked_pipeline_from_definition, cv):
    """
    Test that we can set arbitrary splitters and parameters in the config file which is called by the serializer.
    """
    data_config = get_random_data()
    evaluation_config = {"cv_mode": "full_build"}
    if cv:
        evaluation_config["cv"] = cv

    model_config = {
        "sklearn.multioutput.MultiOutputRegressor": {
            "estimator": "sklearn.ensemble.forest.RandomForestRegressor"
        }
    }

    machine = Machine(
        name="model-name",
        dataset=data_config,
        model=model_config,
        evaluation=evaluation_config,
        project_name="test",
    )

    ModelBuilder(machine).build()

    if cv:
        mocked_pipeline_from_definition.assert_called_with(cv)
    else:
        mocked_pipeline_from_definition.assert_called_with(
            {"sklearn.model_selection.TimeSeriesSplit": {"n_splits": 3}}
        ) 
開發者ID:equinor,項目名稱:gordo,代碼行數:33,代碼來源:test_builder.py

示例13: test_multi_target_regression_one_target

# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputRegressor [as 別名]
def test_multi_target_regression_one_target():
    # Test multi target regression raises
    X, y = datasets.make_regression(n_targets=1)
    rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    assert_raises(ValueError, rgr.fit, X, y) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:7,代碼來源:test_multioutput.py

示例14: test_multi_target_sparse_regression

# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputRegressor [as 別名]
def test_multi_target_sparse_regression():
    X, y = datasets.make_regression(n_targets=3)
    X_train, y_train = X[:50], y[:50]
    X_test = X[50:]

    for sparse in [sp.csr_matrix, sp.csc_matrix, sp.coo_matrix, sp.dok_matrix,
                   sp.lil_matrix]:
        rgr = MultiOutputRegressor(Lasso(random_state=0))
        rgr_sparse = MultiOutputRegressor(Lasso(random_state=0))

        rgr.fit(X_train, y_train)
        rgr_sparse.fit(sparse(X_train), y_train)

        assert_almost_equal(rgr.predict(X_test),
                            rgr_sparse.predict(sparse(X_test))) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:17,代碼來源:test_multioutput.py

示例15: test_multi_target_sample_weights_api

# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputRegressor [as 別名]
def test_multi_target_sample_weights_api():
    X = [[1, 2, 3], [4, 5, 6]]
    y = [[3.141, 2.718], [2.718, 3.141]]
    w = [0.8, 0.6]

    rgr = MultiOutputRegressor(Lasso())
    assert_raises_regex(ValueError, "does not support sample weights",
                        rgr.fit, X, y, w)

    # no exception should be raised if the base estimator supports weights
    rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    rgr.fit(X, y, w)


# 0.23. warning about tol not having its correct default value. 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:17,代碼來源:test_multioutput.py


注:本文中的sklearn.multioutput.MultiOutputRegressor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。