本文整理匯總了Python中sklearn.multioutput.MultiOutputClassifier方法的典型用法代碼示例。如果您正苦於以下問題:Python multioutput.MultiOutputClassifier方法的具體用法?Python multioutput.MultiOutputClassifier怎麽用?Python multioutput.MultiOutputClassifier使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.multioutput
的用法示例。
在下文中一共展示了multioutput.MultiOutputClassifier方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_multi_output_classification_sample_weights
# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputClassifier [as 別名]
def test_multi_output_classification_sample_weights():
# weighted classifier
Xw = [[1, 2, 3], [4, 5, 6]]
yw = [[3, 2], [2, 3]]
w = np.asarray([2., 1.])
forest = RandomForestClassifier(n_estimators=10, random_state=1)
clf_w = MultiOutputClassifier(forest)
clf_w.fit(Xw, yw, w)
# unweighted, but with repeated samples
X = [[1, 2, 3], [1, 2, 3], [4, 5, 6]]
y = [[3, 2], [3, 2], [2, 3]]
forest = RandomForestClassifier(n_estimators=10, random_state=1)
clf = MultiOutputClassifier(forest)
clf.fit(X, y)
X_test = [[1.5, 2.5, 3.5], [3.5, 4.5, 5.5]]
assert_almost_equal(clf.predict(X_test), clf_w.predict(X_test))
# 0.23. warning about tol not having its correct default value.
示例2: test_multi_output_classification_partial_fit_sample_weights
# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputClassifier [as 別名]
def test_multi_output_classification_partial_fit_sample_weights():
# weighted classifier
Xw = [[1, 2, 3], [4, 5, 6], [1.5, 2.5, 3.5]]
yw = [[3, 2], [2, 3], [3, 2]]
w = np.asarray([2., 1., 1.])
sgd_linear_clf = SGDClassifier(random_state=1, max_iter=20)
clf_w = MultiOutputClassifier(sgd_linear_clf)
clf_w.fit(Xw, yw, w)
# unweighted, but with repeated samples
X = [[1, 2, 3], [1, 2, 3], [4, 5, 6], [1.5, 2.5, 3.5]]
y = [[3, 2], [3, 2], [2, 3], [3, 2]]
sgd_linear_clf = SGDClassifier(random_state=1, max_iter=20)
clf = MultiOutputClassifier(sgd_linear_clf)
clf.fit(X, y)
X_test = [[1.5, 2.5, 3.5]]
assert_array_almost_equal(clf.predict(X_test), clf_w.predict(X_test))
示例3: test_multiclass_multioutput_estimator
# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputClassifier [as 別名]
def test_multiclass_multioutput_estimator():
# test to check meta of meta estimators
svc = LinearSVC(random_state=0)
multi_class_svc = OneVsRestClassifier(svc)
multi_target_svc = MultiOutputClassifier(multi_class_svc)
multi_target_svc.fit(X, y)
predictions = multi_target_svc.predict(X)
assert_equal((n_samples, n_outputs), predictions.shape)
# train the forest with each column and assert that predictions are equal
for i in range(3):
multi_class_svc_ = clone(multi_class_svc) # create a clone
multi_class_svc_.fit(X, y[:, i])
assert_equal(list(multi_class_svc_.predict(X)),
list(predictions[:, i]))
示例4: test_multi_output_classification_sample_weights
# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputClassifier [as 別名]
def test_multi_output_classification_sample_weights():
# weighted classifier
Xw = [[1, 2, 3], [4, 5, 6]]
yw = [[3, 2], [2, 3]]
w = np.asarray([2., 1.])
forest = RandomForestClassifier(n_estimators=10, random_state=1)
clf_w = MultiOutputClassifier(forest)
clf_w.fit(Xw, yw, w)
# unweighted, but with repeated samples
X = [[1, 2, 3], [1, 2, 3], [4, 5, 6]]
y = [[3, 2], [3, 2], [2, 3]]
forest = RandomForestClassifier(n_estimators=10, random_state=1)
clf = MultiOutputClassifier(forest)
clf.fit(X, y)
X_test = [[1.5, 2.5, 3.5], [3.5, 4.5, 5.5]]
assert_almost_equal(clf.predict(X_test), clf_w.predict(X_test))
示例5: test_multi_output_classification_partial_fit_sample_weights
# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputClassifier [as 別名]
def test_multi_output_classification_partial_fit_sample_weights():
# weighted classifier
Xw = [[1, 2, 3], [4, 5, 6], [1.5, 2.5, 3.5]]
yw = [[3, 2], [2, 3], [3, 2]]
w = np.asarray([2., 1., 1.])
sgd_linear_clf = SGDClassifier(random_state=1, max_iter=5)
clf_w = MultiOutputClassifier(sgd_linear_clf)
clf_w.fit(Xw, yw, w)
# unweighted, but with repeated samples
X = [[1, 2, 3], [1, 2, 3], [4, 5, 6], [1.5, 2.5, 3.5]]
y = [[3, 2], [3, 2], [2, 3], [3, 2]]
sgd_linear_clf = SGDClassifier(random_state=1, max_iter=5)
clf = MultiOutputClassifier(sgd_linear_clf)
clf.fit(X, y)
X_test = [[1.5, 2.5, 3.5]]
assert_array_almost_equal(clf.predict(X_test), clf_w.predict(X_test))
示例6: test_multi_output_classification_partial_fit_parallelism
# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputClassifier [as 別名]
def test_multi_output_classification_partial_fit_parallelism():
sgd_linear_clf = SGDClassifier(loss='log', random_state=1, max_iter=5)
mor = MultiOutputClassifier(sgd_linear_clf, n_jobs=4)
mor.partial_fit(X, y, classes)
est1 = mor.estimators_[0]
mor.partial_fit(X, y)
est2 = mor.estimators_[0]
if cpu_count() > 1:
# parallelism requires this to be the case for a sane implementation
assert est1 is not est2
# check predict_proba passes
示例7: test_multi_output_predict_proba
# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputClassifier [as 別名]
def test_multi_output_predict_proba():
sgd_linear_clf = SGDClassifier(random_state=1, max_iter=5, tol=1e-3)
param = {'loss': ('hinge', 'log', 'modified_huber')}
# inner function for custom scoring
def custom_scorer(estimator, X, y):
if hasattr(estimator, "predict_proba"):
return 1.0
else:
return 0.0
grid_clf = GridSearchCV(sgd_linear_clf, param_grid=param,
scoring=custom_scorer, cv=3, error_score=np.nan)
multi_target_linear = MultiOutputClassifier(grid_clf)
multi_target_linear.fit(X, y)
multi_target_linear.predict_proba(X)
# SGDClassifier defaults to loss='hinge' which is not a probabilistic
# loss function; therefore it does not expose a predict_proba method
sgd_linear_clf = SGDClassifier(random_state=1, max_iter=5, tol=1e-3)
multi_target_linear = MultiOutputClassifier(sgd_linear_clf)
multi_target_linear.fit(X, y)
err_msg = "The base estimator should implement predict_proba method"
with pytest.raises(ValueError, match=err_msg):
multi_target_linear.predict_proba(X)
# 0.23. warning about tol not having its correct default value.
示例8: test_multi_output_classification_partial_fit
# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputClassifier [as 別名]
def test_multi_output_classification_partial_fit():
# test if multi_target initializes correctly with base estimator and fit
# assert predictions work as expected for predict
sgd_linear_clf = SGDClassifier(loss='log', random_state=1, max_iter=5)
multi_target_linear = MultiOutputClassifier(sgd_linear_clf)
# train the multi_target_linear and also get the predictions.
half_index = X.shape[0] // 2
multi_target_linear.partial_fit(
X[:half_index], y[:half_index], classes=classes)
first_predictions = multi_target_linear.predict(X)
assert_equal((n_samples, n_outputs), first_predictions.shape)
multi_target_linear.partial_fit(X[half_index:], y[half_index:])
second_predictions = multi_target_linear.predict(X)
assert_equal((n_samples, n_outputs), second_predictions.shape)
# train the linear classification with each column and assert that
# predictions are equal after first partial_fit and second partial_fit
for i in range(3):
# create a clone with the same state
sgd_linear_clf = clone(sgd_linear_clf)
sgd_linear_clf.partial_fit(
X[:half_index], y[:half_index, i], classes=classes[i])
assert_array_equal(sgd_linear_clf.predict(X), first_predictions[:, i])
sgd_linear_clf.partial_fit(X[half_index:], y[half_index:, i])
assert_array_equal(sgd_linear_clf.predict(X), second_predictions[:, i])
# 0.23. warning about tol not having its correct default value.
示例9: test_multi_output_classification_partial_fit_no_first_classes_exception
# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputClassifier [as 別名]
def test_multi_output_classification_partial_fit_no_first_classes_exception():
sgd_linear_clf = SGDClassifier(loss='log', random_state=1, max_iter=5)
multi_target_linear = MultiOutputClassifier(sgd_linear_clf)
assert_raises_regex(ValueError, "classes must be passed on the first call "
"to partial_fit.",
multi_target_linear.partial_fit, X, y)
示例10: test_multi_output_classification
# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputClassifier [as 別名]
def test_multi_output_classification():
# test if multi_target initializes correctly with base estimator and fit
# assert predictions work as expected for predict, prodict_proba and score
forest = RandomForestClassifier(n_estimators=10, random_state=1)
multi_target_forest = MultiOutputClassifier(forest)
# train the multi_target_forest and also get the predictions.
multi_target_forest.fit(X, y)
predictions = multi_target_forest.predict(X)
assert_equal((n_samples, n_outputs), predictions.shape)
predict_proba = multi_target_forest.predict_proba(X)
assert len(predict_proba) == n_outputs
for class_probabilities in predict_proba:
assert_equal((n_samples, n_classes), class_probabilities.shape)
assert_array_equal(np.argmax(np.dstack(predict_proba), axis=1),
predictions)
# train the forest with each column and assert that predictions are equal
for i in range(3):
forest_ = clone(forest) # create a clone with the same state
forest_.fit(X, y[:, i])
assert_equal(list(forest_.predict(X)), list(predictions[:, i]))
assert_array_equal(list(forest_.predict_proba(X)),
list(predict_proba[i]))
示例11: test_multiclass_multioutput_estimator_predict_proba
# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputClassifier [as 別名]
def test_multiclass_multioutput_estimator_predict_proba():
seed = 542
# make test deterministic
rng = np.random.RandomState(seed)
# random features
X = rng.normal(size=(5, 5))
# random labels
y1 = np.array(['b', 'a', 'a', 'b', 'a']).reshape(5, 1) # 2 classes
y2 = np.array(['d', 'e', 'f', 'e', 'd']).reshape(5, 1) # 3 classes
Y = np.concatenate([y1, y2], axis=1)
clf = MultiOutputClassifier(LogisticRegression(
multi_class='ovr', solver='liblinear', random_state=seed))
clf.fit(X, Y)
y_result = clf.predict_proba(X)
y_actual = [np.array([[0.23481764, 0.76518236],
[0.67196072, 0.32803928],
[0.54681448, 0.45318552],
[0.34883923, 0.65116077],
[0.73687069, 0.26312931]]),
np.array([[0.5171785, 0.23878628, 0.24403522],
[0.22141451, 0.64102704, 0.13755846],
[0.16751315, 0.18256843, 0.64991843],
[0.27357372, 0.55201592, 0.17441036],
[0.65745193, 0.26062899, 0.08191907]])]
for i in range(len(y_actual)):
assert_almost_equal(y_result[i], y_actual[i])
示例12: test_multi_output_exceptions
# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputClassifier [as 別名]
def test_multi_output_exceptions():
# NotFittedError when fit is not done but score, predict and
# and predict_proba are called
moc = MultiOutputClassifier(LinearSVC(random_state=0))
assert_raises(NotFittedError, moc.predict, y)
assert_raises(NotFittedError, moc.predict_proba, y)
assert_raises(NotFittedError, moc.score, X, y)
# ValueError when number of outputs is different
# for fit and score
y_new = np.column_stack((y1, y2))
moc.fit(X, y)
assert_raises(ValueError, moc.score, X, y_new)
# ValueError when y is continuous
assert_raise_message(ValueError, "Unknown label type", moc.fit, X, X[:, 1])
示例13: test_multi_bettor_fit
# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputClassifier [as 別名]
def test_multi_bettor_fit():
"""Test fit method of multi-bettor."""
multi_bettor = MultiBettor(multi_classifier=MultiOutputClassifier(DummyClassifier()), meta_classifier=DummyClassifier(), targets=['D', 'H']).fit(X, score1, score2, odds)
assert len(multi_bettor.multi_classifier_.estimators_) == len(multi_bettor.targets_)
np.testing.assert_array_equal(np.unique(multi_bettor.meta_classifier_.classes_), np.array(['-', 'D', 'H']))
multi_bettor = MultiBettor(multi_classifier=MultiOutputClassifier(DummyClassifier()), meta_classifier=DummyClassifier(), targets=['over_2.5', 'under_2.5']).fit(X, score1, score2, odds)
assert len(multi_bettor.multi_classifier_.estimators_) == len(multi_bettor.targets_)
np.testing.assert_array_equal(np.unique(multi_bettor.meta_classifier_.classes_), np.array(['over_2.5', 'under_2.5']))
multi_bettor = MultiBettor(multi_classifier=MultiOutputClassifier(DummyClassifier()), meta_classifier=DummyClassifier(), targets=['over_2.5', 'A']).fit(X, score1, score2, odds)
assert len(multi_bettor.multi_classifier_.estimators_) == len(multi_bettor.targets_)
np.testing.assert_array_equal(np.unique(multi_bettor.meta_classifier_.classes_), np.array(['A', 'over_2.5']))
示例14: test_multi_bettor_predict
# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputClassifier [as 別名]
def test_multi_bettor_predict():
"""Test predict method of multi-bettor."""
multi_bettor = MultiBettor(multi_classifier=MultiOutputClassifier(DummyClassifier()), meta_classifier=DummyClassifier(), targets=['D', 'H']).fit(X, score1, score2, odds)
np.testing.assert_array_equal(np.unique(multi_bettor.predict(X)), np.array(['-', 'D', 'H']))
multi_bettor = MultiBettor(multi_classifier=MultiOutputClassifier(DummyClassifier()), meta_classifier=DummyClassifier(), targets=['over_2.5', 'under_2.5']).fit(X, score1, score2, odds)
np.testing.assert_array_equal(np.unique(multi_bettor.predict(X)), np.array(['over_2.5', 'under_2.5']))
multi_bettor = MultiBettor(multi_classifier=MultiOutputClassifier(DummyClassifier()), meta_classifier=DummyClassifier(), targets=['over_2.5', 'A']).fit(X, score1, score2, odds)
np.testing.assert_array_equal(np.unique(multi_bettor.predict(X)), np.array(['A', 'over_2.5']))
示例15: test_multi_bettor_predict_proba
# 需要導入模塊: from sklearn import multioutput [as 別名]
# 或者: from sklearn.multioutput import MultiOutputClassifier [as 別名]
def test_multi_bettor_predict_proba():
"""Test predict probabilities method of multi-bettor."""
multi_bettor = MultiBettor(multi_classifier=MultiOutputClassifier(DummyClassifier()), meta_classifier=DummyClassifier(), targets=['D', 'H']).fit(X, score1, score2, odds)
assert multi_bettor.predict_proba(X).shape[1] == len(np.array(['-', 'D', 'H']))
multi_bettor = MultiBettor(multi_classifier=MultiOutputClassifier(DummyClassifier()), meta_classifier=DummyClassifier(), targets=['over_2.5', 'under_2.5']).fit(X, score1, score2, odds)
assert multi_bettor.predict_proba(X).shape[1] == len(np.array(['over_2.5', 'under_2.5']))
multi_bettor = MultiBettor(multi_classifier=MultiOutputClassifier(DummyClassifier()), meta_classifier=DummyClassifier(), targets=['over_2.5', 'A']).fit(X, score1, score2, odds)
assert multi_bettor.predict_proba(X).shape[1] == len(np.array(['A', 'over_2.5']))