當前位置: 首頁>>代碼示例>>Python>>正文


Python multiclass.OneVsRestClassifier方法代碼示例

本文整理匯總了Python中sklearn.multiclass.OneVsRestClassifier方法的典型用法代碼示例。如果您正苦於以下問題:Python multiclass.OneVsRestClassifier方法的具體用法?Python multiclass.OneVsRestClassifier怎麽用?Python multiclass.OneVsRestClassifier使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.multiclass的用法示例。


在下文中一共展示了multiclass.OneVsRestClassifier方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_ovr_fit_predict

# 需要導入模塊: from sklearn import multiclass [as 別名]
# 或者: from sklearn.multiclass import OneVsRestClassifier [as 別名]
def test_ovr_fit_predict():
    # A classifier which implements decision_function.
    ovr = OneVsRestClassifier(LinearSVC(random_state=0))
    pred = ovr.fit(iris.data, iris.target).predict(iris.data)
    assert_equal(len(ovr.estimators_), n_classes)

    clf = LinearSVC(random_state=0)
    pred2 = clf.fit(iris.data, iris.target).predict(iris.data)
    assert_equal(np.mean(iris.target == pred), np.mean(iris.target == pred2))

    # A classifier which implements predict_proba.
    ovr = OneVsRestClassifier(MultinomialNB())
    pred = ovr.fit(iris.data, iris.target).predict(iris.data)
    assert_greater(np.mean(iris.target == pred), 0.65)


# 0.23. warning about tol not having its correct default value. 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:19,代碼來源:test_multiclass.py

示例2: test_ovr_ovo_regressor

# 需要導入模塊: from sklearn import multiclass [as 別名]
# 或者: from sklearn.multiclass import OneVsRestClassifier [as 別名]
def test_ovr_ovo_regressor():
    # test that ovr and ovo work on regressors which don't have a decision_
    # function
    ovr = OneVsRestClassifier(DecisionTreeRegressor())
    pred = ovr.fit(iris.data, iris.target).predict(iris.data)
    assert_equal(len(ovr.estimators_), n_classes)
    assert_array_equal(np.unique(pred), [0, 1, 2])
    # we are doing something sensible
    assert_greater(np.mean(pred == iris.target), .9)

    ovr = OneVsOneClassifier(DecisionTreeRegressor())
    pred = ovr.fit(iris.data, iris.target).predict(iris.data)
    assert_equal(len(ovr.estimators_), n_classes * (n_classes - 1) / 2)
    assert_array_equal(np.unique(pred), [0, 1, 2])
    # we are doing something sensible
    assert_greater(np.mean(pred == iris.target), .9) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:18,代碼來源:test_multiclass.py

示例3: test_ovr_multiclass

# 需要導入模塊: from sklearn import multiclass [as 別名]
# 或者: from sklearn.multiclass import OneVsRestClassifier [as 別名]
def test_ovr_multiclass():
    # Toy dataset where features correspond directly to labels.
    X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]])
    y = ["eggs", "spam", "ham", "eggs", "ham"]
    Y = np.array([[0, 0, 1],
                  [0, 1, 0],
                  [1, 0, 0],
                  [0, 0, 1],
                  [1, 0, 0]])

    classes = set("ham eggs spam".split())

    for base_clf in (MultinomialNB(), LinearSVC(random_state=0),
                     LinearRegression(), Ridge(),
                     ElasticNet()):
        clf = OneVsRestClassifier(base_clf).fit(X, y)
        assert_equal(set(clf.classes_), classes)
        y_pred = clf.predict(np.array([[0, 0, 4]]))[0]
        assert_array_equal(y_pred, ["eggs"])

        # test input as label indicator matrix
        clf = OneVsRestClassifier(base_clf).fit(X, Y)
        y_pred = clf.predict([[0, 0, 4]])[0]
        assert_array_equal(y_pred, [0, 0, 1]) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:26,代碼來源:test_multiclass.py

示例4: test_ovr_multilabel

# 需要導入模塊: from sklearn import multiclass [as 別名]
# 或者: from sklearn.multiclass import OneVsRestClassifier [as 別名]
def test_ovr_multilabel():
    # Toy dataset where features correspond directly to labels.
    X = np.array([[0, 4, 5], [0, 5, 0], [3, 3, 3], [4, 0, 6], [6, 0, 0]])
    y = np.array([[0, 1, 1],
                  [0, 1, 0],
                  [1, 1, 1],
                  [1, 0, 1],
                  [1, 0, 0]])

    for base_clf in (MultinomialNB(), LinearSVC(random_state=0),
                     LinearRegression(), Ridge(),
                     ElasticNet(), Lasso(alpha=0.5)):
        clf = OneVsRestClassifier(base_clf).fit(X, y)
        y_pred = clf.predict([[0, 4, 4]])[0]
        assert_array_equal(y_pred, [0, 1, 1])
        assert clf.multilabel_ 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:18,代碼來源:test_multiclass.py

示例5: test_ovr_multilabel_dataset

# 需要導入模塊: from sklearn import multiclass [as 別名]
# 或者: from sklearn.multiclass import OneVsRestClassifier [as 別名]
def test_ovr_multilabel_dataset():
    base_clf = MultinomialNB(alpha=1)
    for au, prec, recall in zip((True, False), (0.51, 0.66), (0.51, 0.80)):
        X, Y = datasets.make_multilabel_classification(n_samples=100,
                                                       n_features=20,
                                                       n_classes=5,
                                                       n_labels=2,
                                                       length=50,
                                                       allow_unlabeled=au,
                                                       random_state=0)
        X_train, Y_train = X[:80], Y[:80]
        X_test, Y_test = X[80:], Y[80:]
        clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train)
        Y_pred = clf.predict(X_test)

        assert clf.multilabel_
        assert_almost_equal(precision_score(Y_test, Y_pred, average="micro"),
                            prec,
                            decimal=2)
        assert_almost_equal(recall_score(Y_test, Y_pred, average="micro"),
                            recall,
                            decimal=2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:24,代碼來源:test_multiclass.py

示例6: test_ovr_single_label_predict_proba

# 需要導入模塊: from sklearn import multiclass [as 別名]
# 或者: from sklearn.multiclass import OneVsRestClassifier [as 別名]
def test_ovr_single_label_predict_proba():
    base_clf = MultinomialNB(alpha=1)
    X, Y = iris.data, iris.target
    X_train, Y_train = X[:80], Y[:80]
    X_test = X[80:]
    clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train)

    # Decision function only estimator.
    decision_only = OneVsRestClassifier(svm.SVR(gamma='scale')
                                        ).fit(X_train, Y_train)
    assert not hasattr(decision_only, 'predict_proba')

    Y_pred = clf.predict(X_test)
    Y_proba = clf.predict_proba(X_test)

    assert_almost_equal(Y_proba.sum(axis=1), 1.0)
    # predict assigns a label if the probability that the
    # sample has the label is greater than 0.5.
    pred = np.array([l.argmax() for l in Y_proba])
    assert not (pred - Y_pred).any() 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:22,代碼來源:test_multiclass.py

示例7: test_multiclass_multioutput_estimator

# 需要導入模塊: from sklearn import multiclass [as 別名]
# 或者: from sklearn.multiclass import OneVsRestClassifier [as 別名]
def test_multiclass_multioutput_estimator():
    # test to check meta of meta estimators
    svc = LinearSVC(random_state=0)
    multi_class_svc = OneVsRestClassifier(svc)
    multi_target_svc = MultiOutputClassifier(multi_class_svc)

    multi_target_svc.fit(X, y)

    predictions = multi_target_svc.predict(X)
    assert_equal((n_samples, n_outputs), predictions.shape)

    # train the forest with each column and assert that predictions are equal
    for i in range(3):
        multi_class_svc_ = clone(multi_class_svc)  # create a clone
        multi_class_svc_.fit(X, y[:, i])
        assert_equal(list(multi_class_svc_.predict(X)),
                     list(predictions[:, i])) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:19,代碼來源:test_multioutput.py

示例8: test_classifier_chain_vs_independent_models

# 需要導入模塊: from sklearn import multiclass [as 別名]
# 或者: from sklearn.multiclass import OneVsRestClassifier [as 別名]
def test_classifier_chain_vs_independent_models():
    # Verify that an ensemble of classifier chains (each of length
    # N) can achieve a higher Jaccard similarity score than N independent
    # models
    X, Y = generate_multilabel_dataset_with_correlations()
    X_train = X[:600, :]
    X_test = X[600:, :]
    Y_train = Y[:600, :]
    Y_test = Y[600:, :]

    ovr = OneVsRestClassifier(LogisticRegression())
    ovr.fit(X_train, Y_train)
    Y_pred_ovr = ovr.predict(X_test)

    chain = ClassifierChain(LogisticRegression())
    chain.fit(X_train, Y_train)
    Y_pred_chain = chain.predict(X_test)

    assert_greater(jaccard_score(Y_test, Y_pred_chain, average='samples'),
                   jaccard_score(Y_test, Y_pred_ovr, average='samples')) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:22,代碼來源:test_multioutput.py

示例9: test_thresholded_scorers_multilabel_indicator_data

# 需要導入模塊: from sklearn import multiclass [as 別名]
# 或者: from sklearn.multiclass import OneVsRestClassifier [as 別名]
def test_thresholded_scorers_multilabel_indicator_data():
    # Test that the scorer work with multilabel-indicator format
    # for multilabel and multi-output multi-class classifier
    X, y = make_multilabel_classification(allow_unlabeled=False,
                                          random_state=0)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    # Multi-output multi-class predict_proba
    clf = DecisionTreeClassifier()
    clf.fit(X_train, y_train)
    y_proba = clf.predict_proba(X_test)
    score1 = get_scorer('roc_auc')(clf, X_test, y_test)
    score2 = roc_auc_score(y_test, np.vstack([p[:, -1] for p in y_proba]).T)
    assert_almost_equal(score1, score2)

    # Multi-output multi-class decision_function
    # TODO Is there any yet?
    clf = DecisionTreeClassifier()
    clf.fit(X_train, y_train)
    clf._predict_proba = clf.predict_proba
    clf.predict_proba = None
    clf.decision_function = lambda X: [p[:, 1] for p in clf._predict_proba(X)]

    y_proba = clf.decision_function(X_test)
    score1 = get_scorer('roc_auc')(clf, X_test, y_test)
    score2 = roc_auc_score(y_test, np.vstack([p for p in y_proba]).T)
    assert_almost_equal(score1, score2)

    # Multilabel predict_proba
    clf = OneVsRestClassifier(DecisionTreeClassifier())
    clf.fit(X_train, y_train)
    score1 = get_scorer('roc_auc')(clf, X_test, y_test)
    score2 = roc_auc_score(y_test, clf.predict_proba(X_test))
    assert_almost_equal(score1, score2)

    # Multilabel decision function
    clf = OneVsRestClassifier(LinearSVC(random_state=0))
    clf.fit(X_train, y_train)
    score1 = get_scorer('roc_auc')(clf, X_test, y_test)
    score2 = roc_auc_score(y_test, clf.decision_function(X_test))
    assert_almost_equal(score1, score2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:43,代碼來源:test_score_objects.py

示例10: train_expert

# 需要導入模塊: from sklearn import multiclass [as 別名]
# 或者: from sklearn.multiclass import OneVsRestClassifier [as 別名]
def train_expert(history_context, history_action):
    n_round = len(history_context)
    history_context = np.array([history_context[t] for t in range(n_round)])
    history_action = np.array([history_action[t] for t in range(n_round)])
    logreg = OneVsRestClassifier(LogisticRegression())
    mnb = OneVsRestClassifier(MultinomialNB())
    logreg.fit(history_context, history_action)
    mnb.fit(history_context, history_action)
    return [logreg, mnb] 
開發者ID:ntucllab,項目名稱:striatum,代碼行數:11,代碼來源:simulation_exp4p.py

示例11: train_expert

# 需要導入模塊: from sklearn import multiclass [as 別名]
# 或者: from sklearn.multiclass import OneVsRestClassifier [as 別名]
def train_expert(action_context):
    logreg = OneVsRestClassifier(LogisticRegression())
    mnb = OneVsRestClassifier(MultinomialNB(), )
    logreg.fit(action_context.iloc[:, 2:], action_context.iloc[:, 1])
    mnb.fit(action_context.iloc[:, 2:], action_context.iloc[:, 1])
    return [logreg, mnb] 
開發者ID:ntucllab,項目名稱:striatum,代碼行數:8,代碼來源:movielens_bandit.py

示例12: _one_vs_rest

# 需要導入模塊: from sklearn import multiclass [as 別名]
# 或者: from sklearn.multiclass import OneVsRestClassifier [as 別名]
def _one_vs_rest(self,X,Y):
        self.cls = OneVsRestClassifier(KOMD(**self.get_params())).fit(X,Y)
        self.is_fitted = True
        return self 
開發者ID:IvanoLauriola,項目名稱:MKLpy,代碼行數:6,代碼來源:komd.py

示例13: __init__

# 需要導入模塊: from sklearn import multiclass [as 別名]
# 或者: from sklearn.multiclass import OneVsRestClassifier [as 別名]
def __init__(self, *args, **kwargs):
        self.model = sklearn.svm.SVC(*args, **kwargs)
        if self.model.decision_function_shape == 'ovr':
            self.decision_function_shape = 'ovr'
            # sklearn's ovr isn't real ovr
            self.model = OneVsRestClassifier(self.model) 
開發者ID:ntucllab,項目名稱:libact,代碼行數:8,代碼來源:svm.py

示例14: train_one_vs_rest_SVM

# 需要導入模塊: from sklearn import multiclass [as 別名]
# 或者: from sklearn.multiclass import OneVsRestClassifier [as 別名]
def train_one_vs_rest_SVM(path_boxes_np,CAE_model_path,K,args):
    data=extract_features(path_boxes_np,CAE_model_path,args)
    print('feature extraction finish!')
    # clusters, the data to be clustered by Kmeans
    # clusters=KMeans(n_clusters=K,init='k-means++',n_init=10,algorithm='full',max_iter=300).fit(data)
    centers=kmeans(data,num_centers=K,initialization='PLUSPLUS',num_repetitions=10,
                   max_num_comparisons=100,max_num_iterations=100,algorithm='LLOYD',num_trees=3)
    labels=kmeans_quantize(data,centers)

    # to get the sparse matrix of labels
    sparse_labels=np.eye(K)[labels]
    sparse_labels=(sparse_labels-0.5)*2

    # nums=np.zeros(10,dtype=int)
    # for item in clusters.labels_:
    #     nums[item]+=1
    # print(nums)
    print('clustering finished!')
    # SGDC classifier with onevsrest classifier to replace the ovc-svm with hinge loss and SDCA optimizer in the paper
    base_estimizer=SGDClassifier(max_iter=10000,warm_start=True,loss='hinge',early_stopping=True,n_iter_no_change=50,l1_ratio=0)
    ovr_classifer=OneVsRestClassifier(base_estimizer)

    #clf=svm.LinearSVC(C=1.0,multi_class='ovr',max_iter=len(labels)*5,loss='hinge',)
    ovr_classifer.fit(data,sparse_labels)
    joblib.dump(ovr_classifer,svm_save_dir+args.dataset+'.m')
    print('train finished!') 
開發者ID:fjchange,項目名稱:object_centric_VAD,代碼行數:28,代碼來源:train.py

示例15: test_multilabel

# 需要導入模塊: from sklearn import multiclass [as 別名]
# 或者: from sklearn.multiclass import OneVsRestClassifier [as 別名]
def test_multilabel():
    """Check if error is raised for multilabel classification."""
    X, y = make_multilabel_classification(n_classes=2, n_labels=1,
                                          allow_unlabeled=False,
                                          random_state=123)
    clf = OneVsRestClassifier(SVC(kernel='linear'))

    eclf = VotingClassifier(estimators=[('ovr', clf)], voting='hard')

    try:
        eclf.fit(X, y)
    except NotImplementedError:
        return 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:15,代碼來源:test_voting.py


注:本文中的sklearn.multiclass.OneVsRestClassifier方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。