本文整理匯總了Python中sklearn.model_selection.validation_curve方法的典型用法代碼示例。如果您正苦於以下問題:Python model_selection.validation_curve方法的具體用法?Python model_selection.validation_curve怎麽用?Python model_selection.validation_curve使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.model_selection
的用法示例。
在下文中一共展示了model_selection.validation_curve方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_validation_curve
# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import validation_curve [as 別名]
def test_validation_curve(self):
digits = datasets.load_digits()
df = pdml.ModelFrame(digits)
param_range = np.logspace(-2, -1, 2)
svc = df.svm.SVC(random_state=self.random_state)
result = df.model_selection.validation_curve(svc, 'gamma',
param_range)
expected = ms.validation_curve(svm.SVC(random_state=self.random_state),
digits.data, digits.target,
'gamma', param_range)
self.assertEqual(len(result), 2)
self.assert_numpy_array_almost_equal(result[0], expected[0])
self.assert_numpy_array_almost_equal(result[1], expected[1])
示例2: test_validation_curve
# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import validation_curve [as 別名]
def test_validation_curve():
X, y = make_classification(n_samples=2, n_features=1, n_informative=1,
n_redundant=0, n_classes=2,
n_clusters_per_class=1, random_state=0)
param_range = np.linspace(0, 1, 10)
with warnings.catch_warnings(record=True) as w:
train_scores, test_scores = validation_curve(
MockEstimatorWithParameter(), X, y, param_name="param",
param_range=param_range, cv=2
)
if len(w) > 0:
raise RuntimeError("Unexpected warning: %r" % w[0].message)
assert_array_almost_equal(train_scores.mean(axis=1), param_range)
assert_array_almost_equal(test_scores.mean(axis=1), 1 - param_range)
示例3: test_validation_curve_clone_estimator
# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import validation_curve [as 別名]
def test_validation_curve_clone_estimator():
X, y = make_classification(n_samples=2, n_features=1, n_informative=1,
n_redundant=0, n_classes=2,
n_clusters_per_class=1, random_state=0)
param_range = np.linspace(1, 0, 10)
_, _ = validation_curve(
MockEstimatorWithSingleFitCallAllowed(), X, y,
param_name="param", param_range=param_range, cv=2
)
示例4: test_validation_curve_cv_splits_consistency
# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import validation_curve [as 別名]
def test_validation_curve_cv_splits_consistency():
n_samples = 100
n_splits = 5
X, y = make_classification(n_samples=100, random_state=0)
scores1 = validation_curve(SVC(kernel='linear', random_state=0), X, y,
'C', [0.1, 0.1, 0.2, 0.2],
cv=OneTimeSplitter(n_splits=n_splits,
n_samples=n_samples))
# The OneTimeSplitter is a non-re-entrant cv splitter. Unless, the
# `split` is called for each parameter, the following should produce
# identical results for param setting 1 and param setting 2 as both have
# the same C value.
assert_array_almost_equal(*np.vsplit(np.hstack(scores1)[(0, 2, 1, 3), :],
2))
scores2 = validation_curve(SVC(kernel='linear', random_state=0), X, y,
'C', [0.1, 0.1, 0.2, 0.2],
cv=KFold(n_splits=n_splits, shuffle=True))
# For scores2, compare the 1st and 2nd parameter's scores
# (Since the C value for 1st two param setting is 0.1, they must be
# consistent unless the train test folds differ between the param settings)
assert_array_almost_equal(*np.vsplit(np.hstack(scores2)[(0, 2, 1, 3), :],
2))
scores3 = validation_curve(SVC(kernel='linear', random_state=0), X, y,
'C', [0.1, 0.1, 0.2, 0.2],
cv=KFold(n_splits=n_splits))
# OneTimeSplitter is basically unshuffled KFold(n_splits=5). Sanity check.
assert_array_almost_equal(np.array(scores3), np.array(scores1))
示例5: test_fit_and_score_failing
# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import validation_curve [as 別名]
def test_fit_and_score_failing():
# Create a failing classifier to deliberately fail
failing_clf = FailingClassifier(FailingClassifier.FAILING_PARAMETER)
# dummy X data
X = np.arange(1, 10)
y = np.ones(9)
fit_and_score_args = [failing_clf, X, None, dict(), None, None, 0,
None, None]
# passing error score to trigger the warning message
fit_and_score_kwargs = {'error_score': 0}
# check if the warning message type is as expected
assert_warns(FitFailedWarning, _fit_and_score, *fit_and_score_args,
**fit_and_score_kwargs)
# since we're using FailingClassfier, our error will be the following
error_message = "ValueError: Failing classifier failed as required"
# the warning message we're expecting to see
warning_message = ("Estimator fit failed. The score on this train-test "
"partition for these parameters will be set to %f. "
"Details: \n%s" % (fit_and_score_kwargs['error_score'],
error_message))
# check if the same warning is triggered
assert_warns_message(FitFailedWarning, warning_message, _fit_and_score,
*fit_and_score_args, **fit_and_score_kwargs)
# check if warning was raised, with default error_score argument
warning_message = ("From version 0.22, errors during fit will result "
"in a cross validation score of NaN by default. Use "
"error_score='raise' if you want an exception "
"raised or error_score=np.nan to adopt the "
"behavior from version 0.22.")
with pytest.raises(ValueError):
assert_warns_message(FutureWarning, warning_message, _fit_and_score,
*fit_and_score_args)
fit_and_score_kwargs = {'error_score': 'raise'}
# check if exception was raised, with default error_score='raise'
assert_raise_message(ValueError, "Failing classifier failed as required",
_fit_and_score, *fit_and_score_args,
**fit_and_score_kwargs)
# check that functions upstream pass error_score param to _fit_and_score
error_message = ("error_score must be the string 'raise' or a"
" numeric value. (Hint: if using 'raise', please"
" make sure that it has been spelled correctly.)")
assert_raise_message(ValueError, error_message, cross_validate,
failing_clf, X, cv=3, error_score='unvalid-string')
assert_raise_message(ValueError, error_message, cross_val_score,
failing_clf, X, cv=3, error_score='unvalid-string')
assert_raise_message(ValueError, error_message, learning_curve,
failing_clf, X, y, cv=3, error_score='unvalid-string')
assert_raise_message(ValueError, error_message, validation_curve,
failing_clf, X, y, 'parameter',
[FailingClassifier.FAILING_PARAMETER], cv=3,
error_score='unvalid-string')
assert_equal(failing_clf.score(), 0.) # FailingClassifier coverage