當前位置: 首頁>>代碼示例>>Python>>正文


Python model_selection.cross_val_score方法代碼示例

本文整理匯總了Python中sklearn.model_selection.cross_val_score方法的典型用法代碼示例。如果您正苦於以下問題:Python model_selection.cross_val_score方法的具體用法?Python model_selection.cross_val_score怎麽用?Python model_selection.cross_val_score使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.model_selection的用法示例。


在下文中一共展示了model_selection.cross_val_score方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: search_cv

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import cross_val_score [as 別名]
def search_cv(x_train, y_train, x_test, y_test, model=GradientBoostingClassifier(n_estimators=30)):
    # grid search找到最好的參數
    parameters = {'kernel': ('linear', 'rbf'), 'C': [1, 2, 4], 'gamma': [0.125, 0.25, 0.5, 1, 2, 4]}
    clf = GridSearchCV(model, param_grid=parameters)
    grid_search = clf.fit(x_train, y_train)
    # 對結果打分
    print("Best score: %0.3f" % grid_search.best_score_)
    print(grid_search.best_estimator_)

    # best prarams
    print('best prarams:', clf.best_params_)

    print('-----grid search end------------')
    print('on all train set')
    scores = cross_val_score(grid_search.best_estimator_, x_train, y_train, cv=3, scoring='accuracy')
    print(scores.mean(), scores)
    print('on test set')
    scores = cross_val_score(grid_search.best_estimator_, x_test, y_test, cv=3, scoring='accuracy')
    print(scores.mean(), scores) 
開發者ID:shibing624,項目名稱:text-classifier,代碼行數:21,代碼來源:grid_search_cv.py

示例2: mmb_evaluate_model

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import cross_val_score [as 別名]
def mmb_evaluate_model(self):
        """
        Returns scores from cross validation evaluation on the malicious / benign classifier
        """
        predictive_features = self.features['predictive_features']
        self.clf_X = self.modeldata[predictive_features].values
        self.clf_y = np.array(self.modeldata['label'])

        X_train, X_test, y_train, y_test = train_test_split(self.clf_X, self.clf_y, test_size=0.2, random_state=0)
        lb = LabelBinarizer()
        y_train = np.array([number[0] for number in lb.fit_transform(y_train)])
        eval_cls = RandomForestClassifier(n_estimators=100, max_features=.2)
        eval_cls.fit(X_train, y_train)

        recall = cross_val_score(eval_cls, X_train, y_train, cv=5, scoring='recall')
        precision = cross_val_score(eval_cls, X_train, y_train, cv=5, scoring='precision')
        accuracy = cross_val_score(eval_cls, X_train, y_train, cv=5, scoring='accuracy')
        f1_score = cross_val_score(eval_cls, X_train, y_train, cv=5, scoring='f1_macro')

        return {'accuracy': accuracy, 'f1': f1_score, 'precision': precision, 'recall': recall} 
開發者ID:egaus,項目名稱:MaliciousMacroBot,代碼行數:22,代碼來源:mmbot.py

示例3: test_build_meowa_factory

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import cross_val_score [as 別名]
def test_build_meowa_factory():

    iris = datasets.load_iris()
    X = iris.data
    y = iris.target

    from sklearn.preprocessing import MinMaxScaler
    X = MinMaxScaler().fit_transform(X)

    l = nfpc.FuzzyPatternClassifier(membership_factory=t_factory,
                                    aggregation_factory=nfpc.MEOWAFactory())

    from sklearn.model_selection import cross_val_score

    scores = cross_val_score(l, X, y, cv=10)
    mean = np.mean(scores)

    assert 0.80 < mean 
開發者ID:sorend,項目名稱:fylearn,代碼行數:20,代碼來源:test_nfpc.py

示例4: test_build_ps_owa_factory

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import cross_val_score [as 別名]
def test_build_ps_owa_factory():

    iris = datasets.load_iris()
    X = iris.data
    y = iris.target

    from sklearn.preprocessing import MinMaxScaler
    X = MinMaxScaler().fit_transform(X)

    l = nfpc.FuzzyPatternClassifier(
        membership_factory=t_factory,
        aggregation_factory=nfpc.GAOWAFactory(optimizer=nfpc.ps_owa_optimizer())
    )

    from sklearn.model_selection import cross_val_score

    scores = cross_val_score(l, X, y, cv=10)
    mean = np.mean(scores)

    print("mean", mean)

    assert 0.92 < mean 
開發者ID:sorend,項目名稱:fylearn,代碼行數:24,代碼來源:test_nfpc.py

示例5: test_classifier_iris

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import cross_val_score [as 別名]
def test_classifier_iris():

    iris = load_iris()

    X = iris.data
    y = iris.target

    from sklearn.preprocessing import MinMaxScaler
    X = MinMaxScaler().fit_transform(X)

    l = fpcga.FuzzyPatternClassifierGA(iterations=100, random_state=1)

    from sklearn.model_selection import cross_val_score

    scores = cross_val_score(l, X, y, cv=10)

    assert len(scores) == 10
    assert np.mean(scores) > 0.6
    mean = np.mean(scores)

    print("mean", mean)

    assert 0.92 == pytest.approx(mean, 0.01) 
開發者ID:sorend,項目名稱:fylearn,代碼行數:25,代碼來源:test_fpcga.py

示例6: test_check_scoring_gridsearchcv

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import cross_val_score [as 別名]
def test_check_scoring_gridsearchcv():
    # test that check_scoring works on GridSearchCV and pipeline.
    # slightly redundant non-regression test.

    grid = GridSearchCV(LinearSVC(), param_grid={'C': [.1, 1]})
    scorer = check_scoring(grid, "f1")
    assert isinstance(scorer, _PredictScorer)

    pipe = make_pipeline(LinearSVC())
    scorer = check_scoring(pipe, "f1")
    assert isinstance(scorer, _PredictScorer)

    # check that cross_val_score definitely calls the scorer
    # and doesn't make any assumptions about the estimator apart from having a
    # fit.
    scores = cross_val_score(EstimatorWithFit(), [[1], [2], [3]], [1, 0, 1],
                             scoring=DummyScorer())
    assert_array_equal(scores, 1) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:20,代碼來源:test_score_objects.py

示例7: test_cross_val_score_predict_groups

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import cross_val_score [as 別名]
def test_cross_val_score_predict_groups():
    # Check if ValueError (when groups is None) propagates to cross_val_score
    # and cross_val_predict
    # And also check if groups is correctly passed to the cv object
    X, y = make_classification(n_samples=20, n_classes=2, random_state=0)

    clf = SVC(kernel="linear")

    group_cvs = [LeaveOneGroupOut(), LeavePGroupsOut(2), GroupKFold(),
                 GroupShuffleSplit()]
    for cv in group_cvs:
        assert_raise_message(ValueError,
                             "The 'groups' parameter should not be None.",
                             cross_val_score, estimator=clf, X=X, y=y, cv=cv)
        assert_raise_message(ValueError,
                             "The 'groups' parameter should not be None.",
                             cross_val_predict, estimator=clf, X=X, y=y, cv=cv) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:19,代碼來源:test_validation.py

示例8: test_cross_val_score_pandas

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import cross_val_score [as 別名]
def test_cross_val_score_pandas():
    # check cross_val_score doesn't destroy pandas dataframe
    types = [(MockDataFrame, MockDataFrame)]
    try:
        from pandas import Series, DataFrame
        types.append((Series, DataFrame))
    except ImportError:
        pass
    for TargetType, InputFeatureType in types:
        # X dataframe, y series
        # 3 fold cross val is used so we need atleast 3 samples per class
        X_df, y_ser = InputFeatureType(X), TargetType(y2)
        check_df = lambda x: isinstance(x, InputFeatureType)
        check_series = lambda x: isinstance(x, TargetType)
        clf = CheckingClassifier(check_X=check_df, check_y=check_series)
        cross_val_score(clf, X_df, y_ser) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:18,代碼來源:test_validation.py

示例9: test_cross_val_score_precomputed

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import cross_val_score [as 別名]
def test_cross_val_score_precomputed():
    # test for svm with precomputed kernel
    svm = SVC(kernel="precomputed")
    iris = load_iris()
    X, y = iris.data, iris.target
    linear_kernel = np.dot(X, X.T)
    score_precomputed = cross_val_score(svm, linear_kernel, y)
    svm = SVC(kernel="linear")
    score_linear = cross_val_score(svm, X, y)
    assert_array_almost_equal(score_precomputed, score_linear)

    # test with callable
    svm = SVC(gamma='scale', kernel=lambda x, y: np.dot(x, y.T))
    score_callable = cross_val_score(svm, X, y)
    assert_array_almost_equal(score_precomputed, score_callable)

    # Error raised for non-square X
    svm = SVC(kernel="precomputed")
    assert_raises(ValueError, cross_val_score, svm, X, y)

    # test error is raised when the precomputed kernel is not array-like
    # or sparse
    assert_raises(ValueError, cross_val_score, svm,
                  linear_kernel.tolist(), y) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:26,代碼來源:test_validation.py

示例10: test_cross_val_score_with_score_func_classification

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import cross_val_score [as 別名]
def test_cross_val_score_with_score_func_classification():
    iris = load_iris()
    clf = SVC(kernel='linear')

    # Default score (should be the accuracy score)
    scores = cross_val_score(clf, iris.data, iris.target, cv=5)
    assert_array_almost_equal(scores, [0.97, 1., 0.97, 0.97, 1.], 2)

    # Correct classification score (aka. zero / one score) - should be the
    # same as the default estimator score
    zo_scores = cross_val_score(clf, iris.data, iris.target,
                                scoring="accuracy", cv=5)
    assert_array_almost_equal(zo_scores, [0.97, 1., 0.97, 0.97, 1.], 2)

    # F1 score (class are balanced so f1_score should be equal to zero/one
    # score
    f1_scores = cross_val_score(clf, iris.data, iris.target,
                                scoring="f1_weighted", cv=5)
    assert_array_almost_equal(f1_scores, [0.97, 1., 0.97, 0.97, 1.], 2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:21,代碼來源:test_validation.py

示例11: test_score_memmap

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import cross_val_score [as 別名]
def test_score_memmap():
    # Ensure a scalar score of memmap type is accepted
    iris = load_iris()
    X, y = iris.data, iris.target
    clf = MockClassifier()
    tf = tempfile.NamedTemporaryFile(mode='wb', delete=False)
    tf.write(b'Hello world!!!!!')
    tf.close()
    scores = np.memmap(tf.name, dtype=np.float64)
    score = np.memmap(tf.name, shape=(), mode='r', dtype=np.float64)
    try:
        cross_val_score(clf, X, y, scoring=lambda est, X, y: score)
        # non-scalar should still fail
        assert_raises(ValueError, cross_val_score, clf, X, y,
                      scoring=lambda est, X, y: scores)
    finally:
        # Best effort to release the mmap file handles before deleting the
        # backing file under Windows
        scores, score = None, None
        for _ in range(3):
            try:
                os.unlink(tf.name)
                break
            except WindowsError:
                sleep(1.) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:27,代碼來源:test_validation.py

示例12: getFitness

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import cross_val_score [as 別名]
def getFitness(individual, X, y):
    """
    Feature subset fitness function
    """

    if(individual.count(0) != len(individual)):
        # get index with value 0
        cols = [index for index in range(
            len(individual)) if individual[index] == 0]

        # get features subset
        X_parsed = X.drop(X.columns[cols], axis=1)
        X_subset = pd.get_dummies(X_parsed)

        # apply classification algorithm
        clf = LogisticRegression()

        return (avg(cross_val_score(clf, X_subset, y, cv=5)),)
    else:
        return(0,) 
開發者ID:renatoosousa,項目名稱:GeneticAlgorithmForFeatureSelection,代碼行數:22,代碼來源:gaFeatureSelection.py

示例13: get_chromosome_score

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import cross_val_score [as 別名]
def get_chromosome_score(self, X_chromosome):
        """
        Computes fitness using the subset of data in X_chromosome.
        :param X_chromosome: subset of full data set, containing only a selection of the features.
        :return: mean R2 or keras history last column entry.
        """
        np.random.seed(self.random_state)
        # Use either cross validation
        if self.scoring == 'cv':
            scores = cross_val_score(self.clf, X_chromosome, np.array(self.y), cv=self.n_cv)
            return np.mean(scores)
        # Or keras history in the case of neural networks (based on keras/tensorflow)
        else:
            try:
                history = self.clf.fit(X_chromosome, np.array(self.y))
                return history.history[self.scoring][-1]
            except:
                raise ValueError('Use either "cv" or keras history metrics.') 
開發者ID:SUNCAT-Center,項目名稱:CatLearn,代碼行數:20,代碼來源:site_stability.py

示例14: example_of_cross_validation_using_model_selection

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import cross_val_score [as 別名]
def example_of_cross_validation_using_model_selection(raw_data, labels, num_subjects, num_epochs_per_subj):
    # NOTE: this method does not work for sklearn.svm.SVC with precomputed kernel
    # when the kernel matrix is computed in portions; also, this method only works
    # for self-correlation, i.e. correlation between the same data matrix.

    # no shrinking, set C=1
    svm_clf = svm.SVC(kernel='precomputed', shrinking=False, C=1, gamma='auto')
    #logit_clf = LogisticRegression()
    clf = Classifier(svm_clf, epochs_per_subj=num_epochs_per_subj)
    # doing leave-one-subject-out cross validation
    # no shuffling in cv
    skf = model_selection.StratifiedKFold(n_splits=num_subjects,
                                          shuffle=False)
    scores = model_selection.cross_val_score(clf, list(zip(raw_data, raw_data)),
                                             y=labels,
                                             cv=skf)
    print(scores)
    logger.info(
        'the overall cross validation accuracy is %.2f' %
        np.mean(scores)
    ) 
開發者ID:brainiak,項目名稱:brainiak,代碼行數:23,代碼來源:classification.py

示例15: _sfn

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import cross_val_score [as 別名]
def _sfn(data, mask, myrad, bcast_var):
    """Score classifier on searchlight data using cross-validation.

    The classifier is in `bcast_var[2]`. The labels are in `bast_var[0]`. The
    number of cross-validation folds is in `bast_var[1].
    """
    clf = bcast_var[2]
    masked_data = data[0][mask, :].T
    # print(l[0].shape, mask.shape, data.shape)
    skf = model_selection.StratifiedKFold(n_splits=bcast_var[1],
                                          shuffle=False)
    accuracy = np.mean(model_selection.cross_val_score(clf, masked_data,
                                                       y=bcast_var[0],
                                                       cv=skf,
                                                       n_jobs=1))
    return accuracy 
開發者ID:brainiak,項目名稱:brainiak,代碼行數:18,代碼來源:mvpa_voxelselector.py


注:本文中的sklearn.model_selection.cross_val_score方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。