當前位置: 首頁>>代碼示例>>Python>>正文


Python _validation._fit_and_score方法代碼示例

本文整理匯總了Python中sklearn.model_selection._validation._fit_and_score方法的典型用法代碼示例。如果您正苦於以下問題:Python _validation._fit_and_score方法的具體用法?Python _validation._fit_and_score怎麽用?Python _validation._fit_and_score使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.model_selection._validation的用法示例。


在下文中一共展示了_validation._fit_and_score方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _do_fit

# 需要導入模塊: from sklearn.model_selection import _validation [as 別名]
# 或者: from sklearn.model_selection._validation import _fit_and_score [as 別名]
def _do_fit(n_jobs, verbose, pre_dispatch, base_estimator,
                X, y, scorer, parameter_iterable, fit_params,
                error_score, cv, **kwargs):
        groups = kwargs.pop('groups')

        # test_score, n_samples, parameters
        out = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)(
            delayed(_fit_and_score)(
                clone(base_estimator), X, y, scorer,
                train, test, verbose, parameters,
                fit_params=fit_params,
                return_train_score=False,
                return_n_test_samples=True,
                return_times=False,
                return_parameters=True,
                error_score=error_score)
            for parameters in parameter_iterable
            for train, test in cv.split(X, y, groups))

        # test_score, n_samples, _, parameters
        return [(mod[0], mod[1], None, mod[2]) for mod in out] 
開發者ID:tgsmith61591,項目名稱:skutil,代碼行數:23,代碼來源:fixes.py

示例2: fit_score

# 需要導入模塊: from sklearn.model_selection import _validation [as 別名]
# 或者: from sklearn.model_selection._validation import _fit_and_score [as 別名]
def fit_score(self, X, Y):
        if isinstance(self.cv, int):
            n_folds = self.cv
            self.cv = KFold(n_splits=n_folds).split(X)

        # Formatting is kinda ugly but provides best debugging view
        out = Parallel(n_jobs=self.n_jobs,
                       verbose=self.verbose,
                       pre_dispatch=self.pre_dispatch)\
            (delayed(_fit_and_score)(clone(self.clf), X, Y, self.metric,
                                     train, test, self.verbose, {},
                                     {}, return_parameters=False,
                                     error_score='raise')
             for train, test in self.cv)

        # Out is a list of triplet: score, estimator, n_test_samples
        scores = list(zip(*out))[0]
        return np.mean(scores), np.std(scores) 
開發者ID:skylergrammer,項目名稱:SimulatedAnnealing,代碼行數:20,代碼來源:optimize.py

示例3: test_fit_and_score_working

# 需要導入模塊: from sklearn.model_selection import _validation [as 別名]
# 或者: from sklearn.model_selection._validation import _fit_and_score [as 別名]
def test_fit_and_score_working():
    X, y = make_classification(n_samples=30, random_state=0)
    clf = SVC(kernel="linear", random_state=0)
    train, test = next(ShuffleSplit().split(X))
    # Test return_parameters option
    fit_and_score_args = [clf, X, y, dict(), train, test, 0]
    fit_and_score_kwargs = {'parameters': {'max_iter': 100, 'tol': 0.1},
                            'fit_params': None,
                            'return_parameters': True}
    result = _fit_and_score(*fit_and_score_args,
                            **fit_and_score_kwargs)
    assert result[-1] == fit_and_score_kwargs['parameters'] 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:14,代碼來源:test_validation.py

示例4: test_fit_and_score_verbosity

# 需要導入模塊: from sklearn.model_selection import _validation [as 別名]
# 或者: from sklearn.model_selection._validation import _fit_and_score [as 別名]
def test_fit_and_score_verbosity(capsys, return_train_score, scorer, expected):
    X, y = make_classification(n_samples=30, random_state=0)
    clf = SVC(kernel="linear", random_state=0)
    train, test = next(ShuffleSplit().split(X))

    # test print without train score
    fit_and_score_args = [clf, X, y, scorer, train, test, 10, None, None]
    fit_and_score_kwargs = {'return_train_score': return_train_score}
    _fit_and_score(*fit_and_score_args, **fit_and_score_kwargs)
    out, _ = capsys.readouterr()
    assert out.split('\n')[1] == expected 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:13,代碼來源:test_validation.py

示例5: test_fit_and_score_failing

# 需要導入模塊: from sklearn.model_selection import _validation [as 別名]
# 或者: from sklearn.model_selection._validation import _fit_and_score [as 別名]
def test_fit_and_score_failing():
    # Create a failing classifier to deliberately fail
    failing_clf = FailingClassifier(FailingClassifier.FAILING_PARAMETER)
    # dummy X data
    X = np.arange(1, 10)
    y = np.ones(9)
    fit_and_score_args = [failing_clf, X, None, dict(), None, None, 0,
                          None, None]
    # passing error score to trigger the warning message
    fit_and_score_kwargs = {'error_score': 0}
    # check if the warning message type is as expected
    assert_warns(FitFailedWarning, _fit_and_score, *fit_and_score_args,
                 **fit_and_score_kwargs)
    # since we're using FailingClassfier, our error will be the following
    error_message = "ValueError: Failing classifier failed as required"
    # the warning message we're expecting to see
    warning_message = ("Estimator fit failed. The score on this train-test "
                       "partition for these parameters will be set to %f. "
                       "Details: \n%s" % (fit_and_score_kwargs['error_score'],
                                          error_message))
    # check if the same warning is triggered
    assert_warns_message(FitFailedWarning, warning_message, _fit_and_score,
                         *fit_and_score_args, **fit_and_score_kwargs)

    # check if warning was raised, with default error_score argument
    warning_message = ("From version 0.22, errors during fit will result "
                       "in a cross validation score of NaN by default. Use "
                       "error_score='raise' if you want an exception "
                       "raised or error_score=np.nan to adopt the "
                       "behavior from version 0.22.")
    with pytest.raises(ValueError):
        assert_warns_message(FutureWarning, warning_message, _fit_and_score,
                             *fit_and_score_args)

    fit_and_score_kwargs = {'error_score': 'raise'}
    # check if exception was raised, with default error_score='raise'
    assert_raise_message(ValueError, "Failing classifier failed as required",
                         _fit_and_score, *fit_and_score_args,
                         **fit_and_score_kwargs)

    # check that functions upstream pass error_score param to _fit_and_score
    error_message = ("error_score must be the string 'raise' or a"
                     " numeric value. (Hint: if using 'raise', please"
                     " make sure that it has been spelled correctly.)")

    assert_raise_message(ValueError, error_message, cross_validate,
                         failing_clf, X, cv=3, error_score='unvalid-string')

    assert_raise_message(ValueError, error_message, cross_val_score,
                         failing_clf, X, cv=3, error_score='unvalid-string')

    assert_raise_message(ValueError, error_message, learning_curve,
                         failing_clf, X, y, cv=3, error_score='unvalid-string')

    assert_raise_message(ValueError, error_message, validation_curve,
                         failing_clf, X, y, 'parameter',
                         [FailingClassifier.FAILING_PARAMETER], cv=3,
                         error_score='unvalid-string')

    assert_equal(failing_clf.score(), 0.)  # FailingClassifier coverage 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:62,代碼來源:test_validation.py


注:本文中的sklearn.model_selection._validation._fit_and_score方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。