當前位置: 首頁>>代碼示例>>Python>>正文


Python model_selection.ShuffleSplit方法代碼示例

本文整理匯總了Python中sklearn.model_selection.ShuffleSplit方法的典型用法代碼示例。如果您正苦於以下問題:Python model_selection.ShuffleSplit方法的具體用法?Python model_selection.ShuffleSplit怎麽用?Python model_selection.ShuffleSplit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.model_selection的用法示例。


在下文中一共展示了model_selection.ShuffleSplit方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: Train

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ShuffleSplit [as 別名]
def Train(self, C, A, Y, SF):
        '''
        Train the classifier using the sample matrix A and target matrix Y
        '''
        C.fit(A, Y)
        YH = np.zeros(Y.shape, dtype = np.object)
        for i in np.array_split(np.arange(A.shape[0]), 32):   #Split up verification into chunks to prevent out of memory
            YH[i] = C.predict(A[i])
        s1 = SF(Y, YH)
        print('All:{:8.6f}'.format(s1))
        '''
        ss = ShuffleSplit(random_state = 1151)  #Use fixed state for so training can be repeated later
        trn, tst = next(ss.split(A, Y))         #Make train/test split
        mi = [8] * 1                            #Maximum number of iterations at each iter
        YH = np.zeros((A.shape[0]), dtype = np.object)
        for mic in mi:                                      #Chunk size to split dataset for CV results
            #C.SetMaxIter(mic)                               #Set the maximum number of iterations to run
            #C.fit(A[trn], Y[trn])                           #Perform training iterations
        ''' 
開發者ID:nicholastoddsmith,項目名稱:poeai,代碼行數:21,代碼來源:TargetingSystem.py

示例2: test_safe_split_with_precomputed_kernel

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ShuffleSplit [as 別名]
def test_safe_split_with_precomputed_kernel():
    clf = SVC()
    clfp = SVC(kernel="precomputed")

    iris = datasets.load_iris()
    X, y = iris.data, iris.target
    K = np.dot(X, X.T)

    cv = ShuffleSplit(test_size=0.25, random_state=0)
    train, test = list(cv.split(X))[0]

    X_train, y_train = _safe_split(clf, X, y, train)
    K_train, y_train2 = _safe_split(clfp, K, y, train)
    assert_array_almost_equal(K_train, np.dot(X_train, X_train.T))
    assert_array_almost_equal(y_train, y_train2)

    X_test, y_test = _safe_split(clf, X, y, test, train)
    K_test, y_test2 = _safe_split(clfp, K, y, test, train)
    assert_array_almost_equal(K_test, np.dot(X_test, X_train.T))
    assert_array_almost_equal(y_test, y_test2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:22,代碼來源:test_multiclass.py

示例3: test_2d_y

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ShuffleSplit [as 別名]
def test_2d_y():
    # smoke test for 2d y and multi-label
    n_samples = 30
    rng = np.random.RandomState(1)
    X = rng.randint(0, 3, size=(n_samples, 2))
    y = rng.randint(0, 3, size=(n_samples,))
    y_2d = y.reshape(-1, 1)
    y_multilabel = rng.randint(0, 2, size=(n_samples, 3))
    groups = rng.randint(0, 3, size=(n_samples,))
    splitters = [LeaveOneOut(), LeavePOut(p=2), KFold(), StratifiedKFold(),
                 RepeatedKFold(), RepeatedStratifiedKFold(),
                 ShuffleSplit(), StratifiedShuffleSplit(test_size=.5),
                 GroupShuffleSplit(), LeaveOneGroupOut(),
                 LeavePGroupsOut(n_groups=2), GroupKFold(), TimeSeriesSplit(),
                 PredefinedSplit(test_fold=groups)]
    for splitter in splitters:
        list(splitter.split(X, y, groups))
        list(splitter.split(X, y_2d, groups))
        try:
            list(splitter.split(X, y_multilabel, groups))
        except ValueError as e:
            allowed_target_types = ('binary', 'multiclass')
            msg = "Supported target types are: {}. Got 'multilabel".format(
                allowed_target_types)
            assert msg in str(e) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:27,代碼來源:test_split.py

示例4: _update_train_test

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ShuffleSplit [as 別名]
def _update_train_test(self):
        """
        This function take care of the test_type parameter.

        """
        if self.test_type == 'passive':
            return True
        if len(self._queries) > 0:
            return True
        else:
            # active test split
            all_indices = np.concatenate([self.train_indices, self.test_indices], axis=0)
            all_y = np.concatenate([self._Y_train, self._Y_test], axis=0)
            # select randomly
            ss = ShuffleSplit(n_splits=1, test_size=self.test_size, train_size=None, random_state=90)
            for train_indices, test_indices in ss.split(all_indices):
                # test
                self._Y_test = all_y[test_indices]
                self.test_indices = all_indices[test_indices]
                # train
                self._Y_train = all_y[train_indices]
                self.train_indices = all_indices[train_indices] 
開發者ID:hachmannlab,項目名稱:chemml,代碼行數:24,代碼來源:active.py

示例5: subset_indices

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ShuffleSplit [as 別名]
def subset_indices(d_source, d_target, subsetsize, subsetseed):
    if subsetsize > 0:
        if subsetseed != 0:
            subset_rng = np.random.RandomState(subsetseed)
        else:
            subset_rng = np.random
        strat = StratifiedShuffleSplit(n_splits=1, test_size=subsetsize, random_state=subset_rng)
        shuf = ShuffleSplit(n_splits=1, test_size=subsetsize, random_state=subset_rng)
        _, source_indices = next(strat.split(d_source.y, d_source.y))
        n_src = source_indices.shape[0]
        if d_target.has_ground_truth:
            _, target_indices = next(strat.split(d_target.y, d_target.y))
        else:
            _, target_indices = next(shuf.split(np.arange(len(d_target.images))))
        n_tgt = target_indices.shape[0]
    else:
        source_indices = None
        target_indices = None
        n_src = len(d_source.images)
        n_tgt = len(d_target.images)

    return source_indices, target_indices, n_src, n_tgt 
開發者ID:Britefury,項目名稱:self-ensemble-visual-domain-adapt-photo,代碼行數:24,代碼來源:image_dataset.py

示例6: gen_samples

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ShuffleSplit [as 別名]
def gen_samples(self, y, n_samples, problem_type):
		if problem_type == 'classification':
			splits = StratifiedShuffleSplit(
					n_splits=n_samples,
					test_size=self.cal_portion
				)

			split_ = splits.split(np.zeros((y.size, 1)), y)
		
		else:
			splits = ShuffleSplit(
				n_splits=n_samples,
				test_size=self.cal_portion
			)

			split_ = splits.split(np.zeros((y.size, 1)))

		for train, cal in split_:
			yield train, cal


# -----------------------------------------------------------------------------
# Conformal ensemble
# ----------------------------------------------------------------------------- 
開發者ID:donlnz,項目名稱:nonconformist,代碼行數:26,代碼來源:acp.py

示例7: get_single_train_test_split

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ShuffleSplit [as 別名]
def get_single_train_test_split(self):
        splits = dict()
        cv_iter = ShuffleSplit(
            n_splits=1, random_state=self.random_state, test_size=0.80
        )
        for n_obj, arr in self.X_dict.items():
            if arr.shape[0] == 1:
                splits[n_obj] = ([0], [0])
            else:
                splits[n_obj] = list(cv_iter.split(arr))[0]
        self.X_train = dict()
        self.Y_train = dict()
        self.X_test = dict()
        self.Y_test = dict()
        for n_obj, itr in splits.items():
            train_idx, test_idx = itr
            self.X_train[n_obj] = np.copy(self.X_dict[n_obj][train_idx])
            self.X_test[n_obj] = np.copy(self.X_dict[n_obj][test_idx])
            self.Y_train[n_obj] = np.copy(self.Y_dict[n_obj][train_idx])
            self.Y_test[n_obj] = np.copy(self.Y_dict[n_obj][test_idx])
        self.X, self.Y = self.sub_sampling_from_dictionary()
        self.__check_dataset_validity__()
        self.X, self.X_test = standardize_features(self.X, self.X_test)
        return self.X, self.Y, self.X_test, self.Y_test 
開發者ID:kiudee,項目名稱:cs-ranking,代碼行數:26,代碼來源:expedia_dataset_reader.py

示例8: TestPerformance

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ShuffleSplit [as 別名]
def TestPerformance(self, df=None):
        # If no dataframe is provided, use the currently learned one
        if (df is None):
            D = self.D
        else:
            D = self.S.transform(df.copy())
        # Get features from the data frame
        A = self._ExtractFeat(D)
        # Get the target values and their corresponding column names
        y, _ = self._ExtractTarg(D)
        # Begin cross validation
        ss = ShuffleSplit(n_splits=1)
        for trn, tst in ss.split(A):
            s1 = cross_val_score(self.R, A, y, cv=3, scoring=make_scorer(r2_score))
            s2 = cross_val_score(self.R, A[tst], y[tst], cv=3, scoring=make_scorer(r2_score))
            s3 = cross_val_score(self.R, A[trn], y[trn], cv=3, scoring=make_scorer(r2_score))
            print('C-V:\t' + str(s1) + '\nTst:\t' + str(s2) + '\nTrn:\t' + str(s3)) 
開發者ID:5ymph0en1x,項目名稱:SyBrain,代碼行數:19,代碼來源:stockpredictor.py

示例9: estimate_predictive_performance

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ShuffleSplit [as 別名]
def estimate_predictive_performance(x_y,
                                    estimator=None,
                                    n_splits=10,
                                    random_state=1):
    """estimate_predictive_performance."""
    x, y = x_y
    cv = ShuffleSplit(n_splits=n_splits,
                      test_size=0.3,
                      random_state=random_state)
    scoring = make_scorer(average_precision_score)
    scores = cross_val_score(estimator, x, y, cv=cv, scoring=scoring)
    return scores 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:14,代碼來源:estimator_utils.py

示例10: cv_reg

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ShuffleSplit [as 別名]
def cv_reg(x, test_size = 0.2, n_splits = 5, random_state=None): return ss(n_splits, test_size, random_state=random_state).split(x) 
開發者ID:ypeleg,項目名稱:HungaBunga,代碼行數:3,代碼來源:core.py

示例11: test_cross_val_score_client

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ShuffleSplit [as 別名]
def test_cross_val_score_client(trend):
    "Test the deprecated dask Client interface"
    coords, data = trend[:2]
    model = Trend(degree=1)
    nsplits = 5
    cross_validator = ShuffleSplit(n_splits=nsplits, random_state=0)
    client = Client(processes=False)
    futures = cross_val_score(model, coords, data, cv=cross_validator, client=client)
    scores = [future.result() for future in futures]
    client.close()
    assert len(scores) == nsplits
    npt.assert_allclose(scores, 1) 
開發者ID:fatiando,項目名稱:verde,代碼行數:14,代碼來源:test_model_selection.py

示例12: test_shuffle_split

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ShuffleSplit [as 別名]
def test_shuffle_split():
    ss1 = ShuffleSplit(test_size=0.2, random_state=0).split(X)
    ss2 = ShuffleSplit(test_size=2, random_state=0).split(X)
    ss3 = ShuffleSplit(test_size=np.int32(2), random_state=0).split(X)
    ss4 = ShuffleSplit(test_size=int(2), random_state=0).split(X)
    for t1, t2, t3, t4 in zip(ss1, ss2, ss3, ss4):
        assert_array_equal(t1[0], t2[0])
        assert_array_equal(t2[0], t3[0])
        assert_array_equal(t3[0], t4[0])
        assert_array_equal(t1[1], t2[1])
        assert_array_equal(t2[1], t3[1])
        assert_array_equal(t3[1], t4[1]) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:14,代碼來源:test_split.py

示例13: test_shufflesplit_errors

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ShuffleSplit [as 別名]
def test_shufflesplit_errors(test_size, train_size):
    with pytest.raises(ValueError):
        next(ShuffleSplit(test_size=test_size, train_size=train_size).split(X)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:5,代碼來源:test_split.py

示例14: test_fit_and_score_working

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ShuffleSplit [as 別名]
def test_fit_and_score_working():
    X, y = make_classification(n_samples=30, random_state=0)
    clf = SVC(kernel="linear", random_state=0)
    train, test = next(ShuffleSplit().split(X))
    # Test return_parameters option
    fit_and_score_args = [clf, X, y, dict(), train, test, 0]
    fit_and_score_kwargs = {'parameters': {'max_iter': 100, 'tol': 0.1},
                            'fit_params': None,
                            'return_parameters': True}
    result = _fit_and_score(*fit_and_score_args,
                            **fit_and_score_kwargs)
    assert result[-1] == fit_and_score_kwargs['parameters'] 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:14,代碼來源:test_validation.py

示例15: test_fit_and_score_verbosity

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ShuffleSplit [as 別名]
def test_fit_and_score_verbosity(capsys, return_train_score, scorer, expected):
    X, y = make_classification(n_samples=30, random_state=0)
    clf = SVC(kernel="linear", random_state=0)
    train, test = next(ShuffleSplit().split(X))

    # test print without train score
    fit_and_score_args = [clf, X, y, scorer, train, test, 10, None, None]
    fit_and_score_kwargs = {'return_train_score': return_train_score}
    _fit_and_score(*fit_and_score_args, **fit_and_score_kwargs)
    out, _ = capsys.readouterr()
    assert out.split('\n')[1] == expected 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:13,代碼來源:test_validation.py


注:本文中的sklearn.model_selection.ShuffleSplit方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。