當前位置: 首頁>>代碼示例>>Python>>正文


Python model_selection.ParameterSampler方法代碼示例

本文整理匯總了Python中sklearn.model_selection.ParameterSampler方法的典型用法代碼示例。如果您正苦於以下問題:Python model_selection.ParameterSampler方法的具體用法?Python model_selection.ParameterSampler怎麽用?Python model_selection.ParameterSampler使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.model_selection的用法示例。


在下文中一共展示了model_selection.ParameterSampler方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: fit

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterSampler [as 別名]
def fit(self, X, y=None):
        """Run fit on the estimator with randomly drawn parameters.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training vector, where n_samples in the number of samples and
            n_features is the number of features.
        y : array-like, shape = [n_samples] or [n_samples, n_output], optional
            Target relative to X for classification or regression;
            None for unsupervised learning.
        """
        sampled_params = ParameterSampler(self.param_distributions,
                                          self.n_iter,
                                          random_state=self.random_state)

        # the super class will handle the X, y validation
        return self._fit(X, y, sampled_params) 
開發者ID:tgsmith61591,項目名稱:skutil,代碼行數:20,代碼來源:fixes.py

示例2: test_param_sampler

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterSampler [as 別名]
def test_param_sampler():
    # test basic properties of param sampler
    param_distributions = {"kernel": ["rbf", "linear"],
                           "C": uniform(0, 1)}
    sampler = ParameterSampler(param_distributions=param_distributions,
                               n_iter=10, random_state=0)
    samples = [x for x in sampler]
    assert_equal(len(samples), 10)
    for sample in samples:
        assert sample["kernel"] in ["rbf", "linear"]
        assert 0 <= sample["C"] <= 1

    # test that repeated calls yield identical parameters
    param_distributions = {"C": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}
    sampler = ParameterSampler(param_distributions=param_distributions,
                               n_iter=3, random_state=0)
    assert_equal([x for x in sampler], [x for x in sampler])

    if sp_version >= (0, 16):
        param_distributions = {"C": uniform(0, 1)}
        sampler = ParameterSampler(param_distributions=param_distributions,
                                   n_iter=10, random_state=0)
        assert_equal([x for x in sampler], [x for x in sampler]) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:25,代碼來源:test_search.py

示例3: sample_hyperparameters

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterSampler [as 別名]
def sample_hyperparameters(random_state, num):

    space = {
        'n_iter': N_ITER,
        'batch_size': BATCH_SIZE,
        'l2': L2,
        'learning_rate': LEARNING_RATES,
        'loss': LOSSES,
        'embedding_dim': EMBEDDING_DIM,
    }

    sampler = ParameterSampler(space,
                               n_iter=num,
                               random_state=random_state)

    for params in sampler:
        yield params 
開發者ID:maciejkula,項目名稱:spotlight,代碼行數:19,代碼來源:example.py

示例4: sample_cnn_hyperparameters

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterSampler [as 別名]
def sample_cnn_hyperparameters(random_state, num):

    space = {
        'n_iter': N_ITER,
        'batch_size': BATCH_SIZE,
        'l2': L2,
        'learning_rate': LEARNING_RATES,
        'loss': LOSSES,
        'embedding_dim': EMBEDDING_DIM,
        'kernel_width': [3, 5, 7],
        'num_layers': list(range(1, 10)),
        'dilation_multiplier': [1, 2],
        'nonlinearity': ['tanh', 'relu'],
        'residual': [True, False]
    }

    sampler = ParameterSampler(space,
                               n_iter=num,
                               random_state=random_state)

    for params in sampler:
        params['dilation'] = list(params['dilation_multiplier'] ** (i % 8)
                                  for i in range(params['num_layers']))

        yield params 
開發者ID:maciejkula,項目名稱:spotlight,代碼行數:27,代碼來源:movielens_sequence.py

示例5: sample_lstm_hyperparameters

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterSampler [as 別名]
def sample_lstm_hyperparameters(random_state, num):

    space = {
        'n_iter': N_ITER,
        'batch_size': BATCH_SIZE,
        'l2': L2,
        'learning_rate': LEARNING_RATES,
        'loss': LOSSES,
        'embedding_dim': EMBEDDING_DIM,
    }

    sampler = ParameterSampler(space,
                               n_iter=num,
                               random_state=random_state)

    for params in sampler:

        yield params 
開發者ID:maciejkula,項目名稱:spotlight,代碼行數:20,代碼來源:movielens_sequence.py

示例6: sample_pooling_hyperparameters

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterSampler [as 別名]
def sample_pooling_hyperparameters(random_state, num):

    space = {
        'n_iter': N_ITER,
        'batch_size': BATCH_SIZE,
        'l2': L2,
        'learning_rate': LEARNING_RATES,
        'loss': LOSSES,
        'embedding_dim': EMBEDDING_DIM,
    }

    sampler = ParameterSampler(space,
                               n_iter=num,
                               random_state=random_state)

    for params in sampler:

        yield params 
開發者ID:maciejkula,項目名稱:spotlight,代碼行數:20,代碼來源:movielens_sequence.py

示例7: fit

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterSampler [as 別名]
def fit(self, X, y=None, groups=None):
        """Run fit on the estimator with randomly drawn parameters.

        Parameters
        ----------

        X : array-like, shape = [n_samples, n_features]
            Training vector, where n_samples in the number of samples and
            n_features is the number of features.

        y : array-like, shape = [n_samples] or [n_samples, n_output], optional
            Target relative to X for classification or regression;
            None for unsupervised learning.

        groups : array-like, with shape (n_samples,), optional
            Group labels for the samples used while splitting the dataset into
            train/test set.
        """
        sampled_params = ParameterSampler(self.param_distributions,
                                          self.n_iter,
                                          random_state=self.random_state)

        return self._fit(X, y, groups, sampled_params) 
開發者ID:databricks,項目名稱:spark-sklearn,代碼行數:25,代碼來源:random_search.py

示例8: test_param_sampler

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterSampler [as 別名]
def test_param_sampler():
    # test basic properties of param sampler
    param_distributions = {"kernel": ["rbf", "linear"],
                           "C": uniform(0, 1)}
    sampler = ParameterSampler(param_distributions=param_distributions,
                               n_iter=10, random_state=0)
    samples = [x for x in sampler]
    assert_equal(len(samples), 10)
    for sample in samples:
        assert_true(sample["kernel"] in ["rbf", "linear"])
        assert_true(0 <= sample["C"] <= 1)

    # test that repeated calls yield identical parameters
    param_distributions = {"C": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}
    sampler = ParameterSampler(param_distributions=param_distributions,
                               n_iter=3, random_state=0)
    assert_equal([x for x in sampler], [x for x in sampler])

    if sp_version >= (0, 16):
        param_distributions = {"C": uniform(0, 1)}
        sampler = ParameterSampler(param_distributions=param_distributions,
                                   n_iter=10, random_state=0)
        assert_equal([x for x in sampler], [x for x in sampler]) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:25,代碼來源:test_search.py

示例9: fit

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterSampler [as 別名]
def fit(self, frame):
        """Fit the grid search.

        Parameters
        ----------

        frame : H2OFrame, shape=(n_samples, n_features)
            The training frame on which to fit.
        """
        sampled_params = ParameterSampler(self.param_grid,
                                          self.n_iter,
                                          random_state=self.random_state)

        return self._fit(frame, sampled_params) 
開發者ID:tgsmith61591,項目名稱:skutil,代碼行數:16,代碼來源:grid_search.py

示例10: run_one_classifier

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterSampler [as 別名]
def run_one_classifier(x, y, small = True, normalize_x = True, n_jobs=cpu_count()-1, brain=False, test_size=0.2, n_splits=5, upsample=True, scoring=None, verbose=False, grid_search=True):
    all_params = (linear_models_n_params_small if small else linear_models_n_params) +  (nn_models_n_params_small if small else nn_models_n_params) + ([] if small else gaussianprocess_models_n_params) + neighbor_models_n_params + (svm_models_n_params_small if small else svm_models_n_params) + (tree_models_n_params_small if small else tree_models_n_params)
    all_params = random.choice(all_params)
    return all_params[0](**(list(ParameterSampler(all_params[1], n_iter=1))[0])) 
開發者ID:ypeleg,項目名稱:HungaBunga,代碼行數:6,代碼來源:classification.py

示例11: run_one_regressor

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterSampler [as 別名]
def run_one_regressor(x, y, small = True, normalize_x = True, n_jobs=cpu_count()-1, brain=False, test_size=0.2, n_splits=5, upsample=True, scoring=None, verbose=False, grid_search=True):
    all_params = (linear_models_n_params_small if small else linear_models_n_params) + (nn_models_n_params_small if small else nn_models_n_params) + ([] if small else gaussianprocess_models_n_params) + neighbor_models_n_params + (svm_models_n_params_small if small else svm_models_n_params) + (tree_models_n_params_small if small else tree_models_n_params)
    all_params = random.choice(all_params)
    return all_params[0](**(list(ParameterSampler(all_params[1], n_iter=1))[0])) 
開發者ID:ypeleg,項目名稱:HungaBunga,代碼行數:6,代碼來源:regression.py

示例12: test_parameters_sampler_replacement

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterSampler [as 別名]
def test_parameters_sampler_replacement():
    # raise warning if n_iter is bigger than total parameter space
    params = {'first': [0, 1], 'second': ['a', 'b', 'c']}
    sampler = ParameterSampler(params, n_iter=7)
    n_iter = 7
    grid_size = 6
    expected_warning = ('The total space of parameters %d is smaller '
                        'than n_iter=%d. Running %d iterations. For '
                        'exhaustive searches, use GridSearchCV.'
                        % (grid_size, n_iter, grid_size))
    assert_warns_message(UserWarning, expected_warning,
                         list, sampler)

    # degenerates to GridSearchCV if n_iter the same as grid_size
    sampler = ParameterSampler(params, n_iter=6)
    samples = list(sampler)
    assert_equal(len(samples), 6)
    for values in ParameterGrid(params):
        assert values in samples

    # test sampling without replacement in a large grid
    params = {'a': range(10), 'b': range(10), 'c': range(10)}
    sampler = ParameterSampler(params, n_iter=99, random_state=42)
    samples = list(sampler)
    assert_equal(len(samples), 99)
    hashable_samples = ["a%db%dc%d" % (p['a'], p['b'], p['c'])
                        for p in samples]
    assert_equal(len(set(hashable_samples)), 99)

    # doesn't go into infinite loops
    params_distribution = {'first': bernoulli(.5), 'second': ['a', 'b', 'c']}
    sampler = ParameterSampler(params_distribution, n_iter=7)
    samples = list(sampler)
    assert_equal(len(samples), 7) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:36,代碼來源:test_search.py

示例13: tuning

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterSampler [as 別名]
def tuning(mode, n_iter, n_gpu, devices, save_interval, n_blocks, block_id):

    if n_gpu == -1:
        n_gpu = len(devices.split(','))

    space = [
        {
            # 'loss': ['arcface', 'cosface'],
            'loss': ['arcface', 'cosface', 'softmax'],
            'epochs': [5],
            'augmentation': ['soft'],
        },
    ]

    if mode == 'grid':
        candidate_list = list(ParameterGrid(space))
    elif mode == 'random':
        candidate_list = list(ParameterSampler(space, n_iter, random_state=params['seed']))
    else:
        raise ValueError

    n_per_block = math.ceil(len(candidate_list) / n_blocks)
    candidate_chunk = candidate_list[block_id * n_per_block: (block_id + 1) * n_per_block]

    utils.launch_tuning(mode=mode, n_iter=n_iter, n_gpu=n_gpu, devices=devices,
                        params=params, root=ROOT, save_interval=save_interval,
                        candidate_list=candidate_chunk) 
開發者ID:lyakaap,項目名稱:Landmark2019-1st-and-3rd-Place-Solution,代碼行數:29,代碼來源:v1only.py

示例14: tuning

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterSampler [as 別名]
def tuning(mode, n_iter, n_gpu, devices, save_interval, n_blocks, block_id):

    if n_gpu == -1:
        n_gpu = len(devices.split(','))

    space = [
        {
            'loss': ['arcface'],
            # 'verifythresh': [20, 30, 40, 50],
            # 'freqthresh': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
        },
    ]

    if mode == 'grid':
        candidate_list = list(ParameterGrid(space))
    elif mode == 'random':
        candidate_list = list(ParameterSampler(space, n_iter, random_state=params['seed']))
    else:
        raise ValueError

    n_per_block = math.ceil(len(candidate_list) / n_blocks)
    candidate_chunk = candidate_list[block_id * n_per_block: (block_id + 1) * n_per_block]

    utils.launch_tuning(mode=mode, n_iter=n_iter, n_gpu=n_gpu, devices=devices,
                        params=params, root=ROOT, save_interval=save_interval,
                        candidate_list=candidate_chunk) 
開發者ID:lyakaap,項目名稱:Landmark2019-1st-and-3rd-Place-Solution,代碼行數:28,代碼來源:v2clean.py

示例15: _run_search

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterSampler [as 別名]
def _run_search(self, evaluate_candidates):
        """Search n_iter candidates from param_distributions"""
        ps = ParameterSampler(self.param_distributions, self.n_iter,
                              random_state=self.random_state)
        evaluate_candidates(ps) 
開發者ID:bsc-wdc,項目名稱:dislib,代碼行數:7,代碼來源:_search.py


注:本文中的sklearn.model_selection.ParameterSampler方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。