當前位置: 首頁>>代碼示例>>Python>>正文


Python model_selection.ParameterGrid方法代碼示例

本文整理匯總了Python中sklearn.model_selection.ParameterGrid方法的典型用法代碼示例。如果您正苦於以下問題:Python model_selection.ParameterGrid方法的具體用法?Python model_selection.ParameterGrid怎麽用?Python model_selection.ParameterGrid使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.model_selection的用法示例。


在下文中一共展示了model_selection.ParameterGrid方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_regression

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterGrid [as 別名]
def test_regression():
    # Check regression for various parameter settings.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(boston.data[:50],
                                                        boston.target[:50],
                                                        random_state=rng)
    grid = ParameterGrid({"max_samples": [0.5, 1.0],
                          "max_features": [0.5, 1.0],
                          "bootstrap": [True, False],
                          "bootstrap_features": [True, False]})

    for base_estimator in [None,
                           DummyRegressor(),
                           DecisionTreeRegressor(),
                           KNeighborsRegressor(),
                           SVR(gamma='scale')]:
        for params in grid:
            BaggingRegressor(base_estimator=base_estimator,
                             random_state=rng,
                             **params).fit(X_train, y_train).predict(X_test) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:22,代碼來源:test_bagging.py

示例2: get_parameters

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterGrid [as 別名]
def get_parameters(sizes, stars, noises, comb_number, repeats, seed):
    """Create a list of dictionaries with all the combinations of the given
    parameters.

    """
    grid = ParameterGrid({
        "size": sizes, "stars": stars, "noise": noises})
    grid = list(grid) * comb_number

    # set the random state for run in parallel
    random = np.random.RandomState(seed)
    images_seeds = random.randint(1_000_000, size=len(grid))

    for idx, g in enumerate(grid):
        g["idx"] = idx
        g["seed"] = seed
        g["images_seed"] = images_seeds[idx]
        g["repeats"] = repeats

    return grid 
開發者ID:toros-astro,項目名稱:astroalign,代碼行數:22,代碼來源:time_bench.py

示例3: test_iforest_sparse

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterGrid [as 別名]
def test_iforest_sparse():
    """Check IForest for various parameter settings on sparse input."""
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(boston.data[:50],
                                                        boston.target[:50],
                                                        random_state=rng)
    grid = ParameterGrid({"max_samples": [0.5, 1.0],
                          "bootstrap": [True, False]})

    for sparse_format in [csc_matrix, csr_matrix]:
        X_train_sparse = sparse_format(X_train)
        X_test_sparse = sparse_format(X_test)

        for params in grid:
            # Trained on sparse format
            sparse_classifier = IsolationForest(
                n_estimators=10, random_state=1, **params).fit(X_train_sparse)
            sparse_results = sparse_classifier.predict(X_test_sparse)

            # Trained on dense format
            dense_classifier = IsolationForest(
                n_estimators=10, random_state=1, **params).fit(X_train)
            dense_results = dense_classifier.predict(X_test)

            assert_array_equal(sparse_results, dense_results) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:27,代碼來源:test_iforest.py

示例4: test_classification

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterGrid [as 別名]
def test_classification():
    # Check classification for various parameter settings.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(iris.data,
                                                        iris.target,
                                                        random_state=rng)
    grid = ParameterGrid({"max_samples": [0.5, 1.0],
                          "max_features": [1, 2, 4],
                          "bootstrap": [True, False],
                          "bootstrap_features": [True, False]})

    for base_estimator in [None,
                           DummyClassifier(),
                           Perceptron(tol=1e-3),
                           DecisionTreeClassifier(),
                           KNeighborsClassifier(),
                           SVC(gamma="scale")]:
        for params in grid:
            BaggingClassifier(base_estimator=base_estimator,
                              random_state=rng,
                              **params).fit(X_train, y_train).predict(X_test) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:23,代碼來源:test_bagging.py

示例5: fitModels

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterGrid [as 別名]
def fitModels(model, paramGrid, X, y, n_jobs=-1, verbose=10):
    """
    Parallelizes fitting all models using all combinations of parameters in paramGrid on provided data.
    :param model: The instantiated model you wish to pass, e.g. LogisticRegression()
    :param paramGrid: The ParameterGrid object created from sklearn.model_selection
    :param X: The independent variable data
    :param y: The response variable data
    :param n_jobs: Number of cores to use in parallelization (defaults to -1: all cores)
    :param verbose: The level of verbosity of reporting updates on parallel process
        Default is 10 (send an update at the completion of each job)
    :return: Returns a list of fitted models

    Example usage:
        from sklearn.linear_model import LogisticRegression
        from sklearn.model_selection import ParameterGrid
        model = LogisticRegression()
        grid = {
            'C': [1e-4, 1e-3], # regularization
            'penalty': ['l1','l2'], # penalty type
            'n_jobs': [-1] # parallelize within each fit over all cores
        }
        paramGrid = ParameterGrid(grid)
        myModels = fitModels(model, paramGrid, X_train, y_train)
    """
    return Parallel(n_jobs=n_jobs, verbose=verbose)(delayed(fitOne)(model, X, y, params) for params in paramGrid) 
開發者ID:jmcarpenter2,項目名稱:parfit,代碼行數:27,代碼來源:fit.py

示例6: _model_param_grid

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterGrid [as 別名]
def _model_param_grid(params_config):
    for name, config in params_config.items():
        try:
            Model = yamlconf.import_module(config['class'])
        except Exception:
            logger.warn("Could not load model {0}"
                        .format(config['class']))
            logger.warn("Exception:\n" + traceback.format_exc())
            continue

        if not hasattr(Model, "train"):
            logger.warn("Model {0} does not have a train() method."
                        .format(config['class']))
            continue

        param_grid = ParameterGrid(config['params'])

        yield name, Model, param_grid 
開發者ID:wikimedia,項目名稱:revscoring,代碼行數:20,代碼來源:tune.py

示例7: test_gscv_fit

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterGrid [as 別名]
def test_gscv_fit(forecaster, param_dict, cv, scoring):
    param_grid = ParameterGrid(param_dict)

    y = load_airline()
    gscv = ForecastingGridSearchCV(forecaster, param_grid=param_dict, cv=cv,
                                   scoring=scoring)
    gscv.fit(y)

    # check scores
    gscv_scores = gscv.cv_results_[f"mean_test_{scoring.name}"]
    expected_scores = compute_expected_gscv_scores(forecaster, cv, param_grid,
                                                   y, scoring)
    np.testing.assert_array_equal(gscv_scores, expected_scores)

    # check best parameters
    assert gscv.best_params_ == param_grid[gscv_scores.argmin()]

    # check best forecaster is the one with best parameters
    assert {key: value for key, value in
            gscv.best_forecaster_.get_params().items() if
            key in gscv.best_params_.keys()} == gscv.best_params_ 
開發者ID:alan-turing-institute,項目名稱:sktime,代碼行數:23,代碼來源:test_tune.py

示例8: test_apply_backtesting

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterGrid [as 別名]
def test_apply_backtesting():
    """Test backtesting function."""

    # Input data
    bettor = Bettor(classifier=DummyClassifier(), targets=['D', 'H'])
    param_grid = {'classifier__strategy': ['uniform', 'stratified']}
    risk_factors = [0.0, 0.2, 0.4]
    random_state = 0
    X = np.random.random((100, 2))
    scores = np.repeat([1, 0], 50), np.repeat([0, 1], 50), np.repeat([1, 0], 50), np.repeat([0, 1], 50)
    odds = np.repeat([2.0, 2.0], 100).reshape(-1, 2)
    cv = TimeSeriesSplit(2, 0.3)
    n_runs = 3
    n_jobs = -1

    # Output
    results = apply_backtesting(bettor, param_grid, risk_factors, X, scores, odds, cv, random_state, n_runs, n_jobs)

    assert list(results.columns) == ['parameters', 'risk_factor', 'coverage', 'mean_yield', 'std_yield', 'std_mean_yield']
    assert len(results) == len(risk_factors) * len(ParameterGrid(param_grid)) 
開發者ID:AlgoWit,項目名稱:sports-betting,代碼行數:22,代碼來源:test_optimization.py

示例9: _prepare_components_grid

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterGrid [as 別名]
def _prepare_components_grid(self, seasonal_harmonics=None):
        """Provides a grid of all allowed model component combinations.

        Parameters
        ----------
        seasonal_harmonics: array-like or None
            When provided all component combinations shall contain those harmonics
        """
        allowed_combinations = []

        use_box_cox = self.use_box_cox

        base_combination = {
            'use_box_cox': self.__prepare_component_boolean_combinations(use_box_cox),
            'box_cox_bounds': [self.box_cox_bounds],
            'use_arma_errors': [self.use_arma_errors],
            'seasonal_periods': [self.seasonal_periods],
        }
        if seasonal_harmonics is not None:
            base_combination['seasonal_harmonics'] = [seasonal_harmonics]

        if self.use_trend is not True:  # False or None
            allowed_combinations.append({
                **base_combination,
                **{
                    'use_trend': [False],
                    'use_damped_trend': [False],  # Damped trend must be False when trend is False
                }
            })

        if self.use_trend is not False:  # True or None
            allowed_combinations.append({
                **base_combination,
                **{
                    'use_trend': [True],
                    'use_damped_trend': self.__prepare_component_boolean_combinations(self.use_damped_trend),
                }
            })
        return ParameterGrid(allowed_combinations) 
開發者ID:intive-DataScience,項目名稱:tbats,代碼行數:41,代碼來源:Estimator.py

示例10: fit

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterGrid [as 別名]
def fit(self, X, y=None, groups=None):
        """Run fit with all sets of parameters.
        
        Parameters
        ----------
        
        X : array-like, shape = [n_samples, n_features]
            Training vector, where n_samples is the number of samples and
            n_features is the number of features.
        
        y : array-like, shape = [n_samples] or [n_samples, n_output], optional
            Target relative to X for classification or regression;
            None for unsupervised learning.
        
        groups : array-like, with shape (n_samples,), optional
            Group labels for the samples used while splitting the dataset into
            train/test set.
        """
        return self._fit(X, y, groups, ParameterGrid(self.param_grid)) 
開發者ID:databricks,項目名稱:spark-sklearn,代碼行數:21,代碼來源:grid_search.py

示例11: test_classification

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterGrid [as 別名]
def test_classification():
    # Check classification for various parameter settings.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(iris.data,
                                                        iris.target,
                                                        random_state=rng)
    grid = ParameterGrid({"max_samples": [0.5, 1.0],
                          "max_features": [1, 2, 4],
                          "bootstrap": [True, False],
                          "bootstrap_features": [True, False]})

    for base_estimator in [None,
                           DummyClassifier(),
                           Perceptron(tol=1e-3),
                           DecisionTreeClassifier(),
                           KNeighborsClassifier(),
                           SVC()]:
        for params in grid:
            BaggingClassifier(base_estimator=base_estimator,
                              random_state=rng,
                              **params).fit(X_train, y_train).predict(X_test) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:23,代碼來源:test_bagging.py

示例12: test_regression

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterGrid [as 別名]
def test_regression():
    # Check regression for various parameter settings.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(boston.data[:50],
                                                        boston.target[:50],
                                                        random_state=rng)
    grid = ParameterGrid({"max_samples": [0.5, 1.0],
                          "max_features": [0.5, 1.0],
                          "bootstrap": [True, False],
                          "bootstrap_features": [True, False]})

    for base_estimator in [None,
                           DummyRegressor(),
                           DecisionTreeRegressor(),
                           KNeighborsRegressor(),
                           SVR()]:
        for params in grid:
            BaggingRegressor(base_estimator=base_estimator,
                             random_state=rng,
                             **params).fit(X_train, y_train).predict(X_test) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:22,代碼來源:test_bagging.py

示例13: get_parameters

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterGrid [as 別名]
def get_parameters(min_size, max_size, step_size, stars,
                   noise, seed, comb_number, repeats):
    """Create a list of dictionaries with all the combinations of the given
    parameters.

    """

    sample_size = int((max_size - min_size) / step_size)
    sizes = np.linspace(min_size, max_size, sample_size, dtype=int)

    grid = ParameterGrid({
        "size": sizes, "stars": [stars],
        "noise": [noise], "repeats": [repeats]})
    grid = list(grid) * comb_number

    # set the random state for run in parallel
    random = np.random.RandomState(seed)
    images_seeds = random.randint(1_000_000, size=len(grid))

    for idx, g in enumerate(grid):
        g["idx"] = idx
        g["seed"] = seed
        g["min_size"] = min_size
        g["max_size"] = max_size
        g["step_size"] = step_size
        g["images_seed"] = images_seeds[idx]
    return grid 
開發者ID:toros-astro,項目名稱:astroalign,代碼行數:29,代碼來源:time_regression.py

示例14: fit

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterGrid [as 別名]
def fit(self, X, y=None):
        """Run fit with all sets of parameters.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training vector, where n_samples is the number of samples and
            n_features is the number of features.
        y : array-like, shape = [n_samples] or [n_samples, n_output], optional
            Target relative to X for classification or regression;
            None for unsupervised learning.
        """
        return self._fit(X, y, ParameterGrid(self.param_grid)) 
開發者ID:tgsmith61591,項目名稱:skutil,代碼行數:15,代碼來源:fixes.py

示例15: fit

# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import ParameterGrid [as 別名]
def fit(self, frame):
        """Fit the grid search.

        Parameters
        ----------

        frame : H2OFrame, shape=(n_samples, n_features)
            The training frame on which to fit.
        """
        return self._fit(frame, ParameterGrid(self.param_grid)) 
開發者ID:tgsmith61591,項目名稱:skutil,代碼行數:12,代碼來源:grid_search.py


注:本文中的sklearn.model_selection.ParameterGrid方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。