本文整理匯總了Python中sklearn.model_selection.LeaveOneOut方法的典型用法代碼示例。如果您正苦於以下問題:Python model_selection.LeaveOneOut方法的具體用法?Python model_selection.LeaveOneOut怎麽用?Python model_selection.LeaveOneOut使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.model_selection
的用法示例。
在下文中一共展示了model_selection.LeaveOneOut方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_calibration_less_classes
# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import LeaveOneOut [as 別名]
def test_calibration_less_classes():
# Test to check calibration works fine when train set in a test-train
# split does not contain all classes
# Since this test uses LOO, at each iteration train set will not contain a
# class label
X = np.random.randn(10, 5)
y = np.arange(10)
clf = LinearSVC(C=1.0)
cal_clf = CalibratedClassifierCV(clf, method="sigmoid", cv=LeaveOneOut())
cal_clf.fit(X, y)
for i, calibrated_classifier in \
enumerate(cal_clf.calibrated_classifiers_):
proba = calibrated_classifier.predict_proba(X)
assert_array_equal(proba[:, i], np.zeros(len(y)))
assert_equal(np.all(np.hstack([proba[:, :i],
proba[:, i + 1:]])), True)
示例2: test_2d_y
# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import LeaveOneOut [as 別名]
def test_2d_y():
# smoke test for 2d y and multi-label
n_samples = 30
rng = np.random.RandomState(1)
X = rng.randint(0, 3, size=(n_samples, 2))
y = rng.randint(0, 3, size=(n_samples,))
y_2d = y.reshape(-1, 1)
y_multilabel = rng.randint(0, 2, size=(n_samples, 3))
groups = rng.randint(0, 3, size=(n_samples,))
splitters = [LeaveOneOut(), LeavePOut(p=2), KFold(), StratifiedKFold(),
RepeatedKFold(), RepeatedStratifiedKFold(),
ShuffleSplit(), StratifiedShuffleSplit(test_size=.5),
GroupShuffleSplit(), LeaveOneGroupOut(),
LeavePGroupsOut(n_groups=2), GroupKFold(), TimeSeriesSplit(),
PredefinedSplit(test_fold=groups)]
for splitter in splitters:
list(splitter.split(X, y, groups))
list(splitter.split(X, y_2d, groups))
try:
list(splitter.split(X, y_multilabel, groups))
except ValueError as e:
allowed_target_types = ('binary', 'multiclass')
msg = "Supported target types are: {}. Got 'multilabel".format(
allowed_target_types)
assert msg in str(e)
示例3: test_cross_val_score
# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import LeaveOneOut [as 別名]
def test_cross_val_score(self):
mkl = algorithms.AverageMKL()
scores = cross_val_score(self.KL, self.Y, mkl)
self.assertEqual(len(scores), 3)
self.assertEqual(len(cross_val_score(self.KL, self.Y, mkl, n_folds=5)), 5)
self.assertRaises(ValueError, cross_val_score, self.KL, self.Y, mkl, scoring='pippo franco')
loo = LeaveOneOut()
scores = cross_val_score(self.KL, self.Y, mkl, cv=loo, scoring='accuracy')
self.assertEqual(len(scores), len(self.Y))
示例4: __init__
# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import LeaveOneOut [as 別名]
def __init__(self, n_split='', description=''):
self._description = description
if n_split == 'all':
self._cv = LeaveOneOut()
self._name = 'LeaveOneOut'
else:
self._cv = StratifiedKFold(int(n_split), shuffle=False)
self._name = '{}-Fold'.format(int(n_split))
pass
示例5: test_nested_cv
# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import LeaveOneOut [as 別名]
def test_nested_cv():
# Test if nested cross validation works with different combinations of cv
rng = np.random.RandomState(0)
X, y = make_classification(n_samples=15, n_classes=2, random_state=0)
groups = rng.randint(0, 5, 15)
cvs = [LeaveOneGroupOut(), LeaveOneOut(), GroupKFold(), StratifiedKFold(),
StratifiedShuffleSplit(n_splits=3, random_state=0)]
for inner_cv, outer_cv in combinations_with_replacement(cvs, 2):
gs = GridSearchCV(Ridge(), param_grid={'alpha': [1, .1]},
cv=inner_cv, error_score='raise', iid=False)
cross_val_score(gs, X=X, y=y, groups=groups, cv=outer_cv,
fit_params={'groups': groups})
示例6: test_leave_one_out_empty_trainset
# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import LeaveOneOut [as 別名]
def test_leave_one_out_empty_trainset():
# LeaveOneGroup out expect at least 2 groups so no need to check
cv = LeaveOneOut()
X, y = [[1]], [0] # 1 sample
with pytest.raises(
ValueError,
match='Cannot perform LeaveOneOut with n_samples=1'):
next(cv.split(X, y))
示例7: loo_prob
# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import LeaveOneOut [as 別名]
def loo_prob(self, X):
"""
Predicts the probabilities for the given data using them as a training and with Leave One Out.
X : 2D-Array or Matrix, default=None
The dataset to be used.
Returns
-------
T : 2D-Array, shape (N x c)
A matrix with the probabilities for each class. N is the number of samples and c is the number of classes.
The element i, j shows the probability of sample X[i] to be in class j.
"""
loo = LeaveOneOut()
probs = np.empty([self.y_.size, self.num_labels])
for train_index, test_index in loo.split(X):
X_train, X_test = X[train_index], X[test_index]
y_train = self.y_[train_index]
knnloo = neighbors.KNeighborsClassifier(self.nn_)
knnloo.fit(X_train, y_train)
probs[test_index, :] = knnloo.predict_proba(X_test)
return probs
示例8: loo_pred
# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import LeaveOneOut [as 別名]
def loo_pred(self, X):
"""
Obtains the predicted for the given data using them as a training and with Leave One Out.
X : 2D-Array or Matrix, default=None
The dataset to be used.
Returns
-------
y : 1D-Array
The vector with the label predictions.
"""
loo = LeaveOneOut()
preds = np.empty(self.y_.size)
for train_index, test_index in loo.split(X):
X_train, X_test = X[train_index], X[test_index]
y_train = self.y_[train_index]
knnloo = neighbors.KNeighborsClassifier(self.nn_)
knnloo.fit(X_train, y_train)
preds[test_index] = knnloo.predict(X_test)
return preds
示例9: _loo_pred
# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import LeaveOneOut [as 別名]
def _loo_pred(self, X):
loo = LeaveOneOut()
preds = np.empty([self.y_.size], dtype=self.y_.dtype)
for train_index, test_index in loo.split(X):
X_train, X_test = X[train_index], X[test_index]
y_train = self.y_[train_index]
knnloo = neighbors.KNeighborsClassifier(self.nn_)
knnloo.fit(X_train, y_train)
preds[test_index] = knnloo.predict(X_test)
return preds
示例10: test_objectmapper
# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import LeaveOneOut [as 別名]
def test_objectmapper(self):
df = pdml.ModelFrame([])
# Splitter Classes
self.assertIs(df.model_selection.KFold, ms.KFold)
self.assertIs(df.model_selection.GroupKFold, ms.GroupKFold)
self.assertIs(df.model_selection.StratifiedKFold, ms.StratifiedKFold)
self.assertIs(df.model_selection.LeaveOneGroupOut, ms.LeaveOneGroupOut)
self.assertIs(df.model_selection.LeavePGroupsOut, ms.LeavePGroupsOut)
self.assertIs(df.model_selection.LeaveOneOut, ms.LeaveOneOut)
self.assertIs(df.model_selection.LeavePOut, ms.LeavePOut)
self.assertIs(df.model_selection.ShuffleSplit, ms.ShuffleSplit)
self.assertIs(df.model_selection.GroupShuffleSplit,
ms.GroupShuffleSplit)
# self.assertIs(df.model_selection.StratifiedShuffleSplit,
# ms.StratifiedShuffleSplit)
self.assertIs(df.model_selection.PredefinedSplit, ms.PredefinedSplit)
self.assertIs(df.model_selection.TimeSeriesSplit, ms.TimeSeriesSplit)
# Splitter Functions
# Hyper-parameter optimizers
self.assertIs(df.model_selection.GridSearchCV, ms.GridSearchCV)
self.assertIs(df.model_selection.RandomizedSearchCV, ms.RandomizedSearchCV)
self.assertIs(df.model_selection.ParameterGrid, ms.ParameterGrid)
self.assertIs(df.model_selection.ParameterSampler, ms.ParameterSampler)
# Model validation
示例11: test_objectmapper_abbr
# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import LeaveOneOut [as 別名]
def test_objectmapper_abbr(self):
df = pdml.ModelFrame([])
# Splitter Classes
self.assertIs(df.ms.KFold, ms.KFold)
self.assertIs(df.ms.GroupKFold, ms.GroupKFold)
self.assertIs(df.ms.StratifiedKFold, ms.StratifiedKFold)
self.assertIs(df.ms.LeaveOneGroupOut, ms.LeaveOneGroupOut)
self.assertIs(df.ms.LeavePGroupsOut, ms.LeavePGroupsOut)
self.assertIs(df.ms.LeaveOneOut, ms.LeaveOneOut)
self.assertIs(df.ms.LeavePOut, ms.LeavePOut)
self.assertIs(df.ms.ShuffleSplit, ms.ShuffleSplit)
self.assertIs(df.ms.GroupShuffleSplit,
ms.GroupShuffleSplit)
# self.assertIs(df.ms.StratifiedShuffleSplit,
# ms.StratifiedShuffleSplit)
self.assertIs(df.ms.PredefinedSplit, ms.PredefinedSplit)
self.assertIs(df.ms.TimeSeriesSplit, ms.TimeSeriesSplit)
# Splitter Functions
# Hyper-parameter optimizers
self.assertIs(df.ms.GridSearchCV, ms.GridSearchCV)
self.assertIs(df.ms.RandomizedSearchCV, ms.RandomizedSearchCV)
self.assertIs(df.ms.ParameterGrid, ms.ParameterGrid)
self.assertIs(df.ms.ParameterSampler, ms.ParameterSampler)
# Model validation
示例12: test_nested_cv
# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import LeaveOneOut [as 別名]
def test_nested_cv():
# Test if nested cross validation works with different combinations of cv
rng = np.random.RandomState(0)
X, y = make_classification(n_samples=15, n_classes=2, random_state=0)
groups = rng.randint(0, 5, 15)
cvs = [LeaveOneGroupOut(), LeaveOneOut(), GroupKFold(), StratifiedKFold(),
StratifiedShuffleSplit(n_splits=3, random_state=0)]
for inner_cv, outer_cv in combinations_with_replacement(cvs, 2):
gs = GridSearchCV(Ridge(), param_grid={'alpha': [1, .1]},
cv=inner_cv)
cross_val_score(gs, X=X, y=y, groups=groups, cv=outer_cv,
fit_params={'groups': groups})
示例13: test_calibration_prob_sum
# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import LeaveOneOut [as 別名]
def test_calibration_prob_sum():
# Test that sum of probabilities is 1. A non-regression test for
# issue #7796
num_classes = 2
X, y = make_classification(n_samples=10, n_features=5,
n_classes=num_classes)
clf = LinearSVC(C=1.0)
clf_prob = CalibratedClassifierCV(clf, method="sigmoid", cv=LeaveOneOut())
clf_prob.fit(X, y)
probs = clf_prob.predict_proba(X)
assert_array_almost_equal(probs.sum(axis=1), np.ones(probs.shape[0]))
示例14: test_cross_val_predict
# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import LeaveOneOut [as 別名]
def test_cross_val_predict():
boston = load_boston()
X, y = boston.data, boston.target
cv = KFold()
est = Ridge()
# Naive loop (should be same as cross_val_predict):
preds2 = np.zeros_like(y)
for train, test in cv.split(X, y):
est.fit(X[train], y[train])
preds2[test] = est.predict(X[test])
preds = cross_val_predict(est, X, y, cv=cv)
assert_array_almost_equal(preds, preds2)
preds = cross_val_predict(est, X, y)
assert_equal(len(preds), len(y))
cv = LeaveOneOut()
preds = cross_val_predict(est, X, y, cv=cv)
assert_equal(len(preds), len(y))
Xsp = X.copy()
Xsp *= (Xsp > np.median(Xsp))
Xsp = coo_matrix(Xsp)
preds = cross_val_predict(est, Xsp, y)
assert_array_almost_equal(len(preds), len(y))
preds = cross_val_predict(KMeans(), X)
assert_equal(len(preds), len(y))
class BadCV():
def split(self, X, y=None, groups=None):
for i in range(4):
yield np.array([0, 1, 2, 3]), np.array([4, 5, 6, 7, 8])
assert_raises(ValueError, cross_val_predict, est, X, y, cv=BadCV())
X, y = load_iris(return_X_y=True)
warning_message = ('Number of classes in training fold (2) does '
'not match total number of classes (3). '
'Results may not be appropriate for your use case.')
assert_warns_message(RuntimeWarning, warning_message,
cross_val_predict, LogisticRegression(),
X, y, method='predict_proba', cv=KFold(2))
示例15: test_cross_validator_with_default_params
# 需要導入模塊: from sklearn import model_selection [as 別名]
# 或者: from sklearn.model_selection import LeaveOneOut [as 別名]
def test_cross_validator_with_default_params():
n_samples = 4
n_unique_groups = 4
n_splits = 2
p = 2
n_shuffle_splits = 10 # (the default value)
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
X_1d = np.array([1, 2, 3, 4])
y = np.array([1, 1, 2, 2])
groups = np.array([1, 2, 3, 4])
loo = LeaveOneOut()
lpo = LeavePOut(p)
kf = KFold(n_splits)
skf = StratifiedKFold(n_splits)
lolo = LeaveOneGroupOut()
lopo = LeavePGroupsOut(p)
ss = ShuffleSplit(random_state=0)
ps = PredefinedSplit([1, 1, 2, 2]) # n_splits = np of unique folds = 2
loo_repr = "LeaveOneOut()"
lpo_repr = "LeavePOut(p=2)"
kf_repr = "KFold(n_splits=2, random_state=None, shuffle=False)"
skf_repr = "StratifiedKFold(n_splits=2, random_state=None, shuffle=False)"
lolo_repr = "LeaveOneGroupOut()"
lopo_repr = "LeavePGroupsOut(n_groups=2)"
ss_repr = ("ShuffleSplit(n_splits=10, random_state=0, "
"test_size=None, train_size=None)")
ps_repr = "PredefinedSplit(test_fold=array([1, 1, 2, 2]))"
n_splits_expected = [n_samples, comb(n_samples, p), n_splits, n_splits,
n_unique_groups, comb(n_unique_groups, p),
n_shuffle_splits, 2]
for i, (cv, cv_repr) in enumerate(zip(
[loo, lpo, kf, skf, lolo, lopo, ss, ps],
[loo_repr, lpo_repr, kf_repr, skf_repr, lolo_repr, lopo_repr,
ss_repr, ps_repr])):
# Test if get_n_splits works correctly
assert_equal(n_splits_expected[i], cv.get_n_splits(X, y, groups))
# Test if the cross-validator works as expected even if
# the data is 1d
np.testing.assert_equal(list(cv.split(X, y, groups)),
list(cv.split(X_1d, y, groups)))
# Test that train, test indices returned are integers
for train, test in cv.split(X, y, groups):
assert_equal(np.asarray(train).dtype.kind, 'i')
assert_equal(np.asarray(train).dtype.kind, 'i')
# Test if the repr works without any errors
assert_equal(cv_repr, repr(cv))
# ValueError for get_n_splits methods
msg = "The 'X' parameter should not be None."
assert_raise_message(ValueError, msg,
loo.get_n_splits, None, y, groups)
assert_raise_message(ValueError, msg,
lpo.get_n_splits, None, y, groups)