本文整理匯總了Python中sklearn.mixture方法的典型用法代碼示例。如果您正苦於以下問題:Python sklearn.mixture方法的具體用法?Python sklearn.mixture怎麽用?Python sklearn.mixture使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn
的用法示例。
在下文中一共展示了sklearn.mixture方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: est_init
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import mixture [as 別名]
def est_init(self, return_cost=False,ind_out=None,\
avg_var_cost=True):
"""
Initial estimator.
See the base class :class:`vampyre.estim.base.Estim` for
a complete description.
:param Boolean return_cost: Flag indicating if :code:`cost` is
to be returned
:returns: :code:`zmean, zvar, [cost]` which are the
prior mean and variance
"""
# otherwise, use the mixture estimator
return self.mix.est_init(return_cost,ind_out,avg_var_cost)
示例2: __init__
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import mixture [as 別名]
def __init__(self, n_mix=32, n_iter=100, covtype='full'):
self.n_mix = n_mix
self.n_iter = n_iter
self.covtype = covtype
self.random_state = np.random.mtrand._rand
# construct GMM parameter
if self.covtype == 'full':
self.param = sklearn.mixture.GaussianMixture(
n_components=self.n_mix,
covariance_type=self.covtype,
max_iter=self.n_iter)
elif self.covtype == 'block_diag':
self.param = BlockDiagonalGaussianMixture(
n_mix=self.n_mix,
n_iter=self.n_iter)
else:
raise ValueError('Covariance type should be full or block_diag')
示例3: _gmmmap
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import mixture [as 別名]
def _gmmmap(self, sddata):
# parameter for sequencial data
T, sddim = sddata.shape
# estimate posterior sequence
wseq = self.pX.predict_proba(sddata)
# estimate mixture sequence
cseq = np.argmax(wseq, axis=1)
mseq = np.zeros((T, sddim))
covseq = np.zeros((T, sddim, sddim))
for t in range(T):
# read maximum likelihood mixture component in frame t
m = cseq[t]
# conditional mean vector sequence
mseq[t] = self.meanY[m] + \
self.A[m] @ (sddata[t] - self.meanX[m])
# conditional covariance sequence
covseq[t] = self.cond_cov_inv[m]
return cseq, wseq, mseq, covseq
示例4: _signal_binarize
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import mixture [as 別名]
def _signal_binarize(signal, method="threshold", threshold="auto"):
method = method.lower() # remove capitalised letters
if method == "threshold":
binary = _signal_binarize_threshold(signal, threshold=threshold)
elif method == "mixture":
binary = _signal_binarize_mixture(signal, threshold=threshold)
else:
raise ValueError("NeuroKit error: signal_binarize(): 'method' should be one of 'threshold' or 'mixture'.")
return binary
# =============================================================================
# Methods
# =============================================================================
示例5: _signal_binarize_mixture
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import mixture [as 別名]
def _signal_binarize_mixture(signal, threshold="auto"):
if threshold == "auto":
threshold = 0.5
# fit a Gaussian Mixture Model with two components
clf = sklearn.mixture.GaussianMixture(n_components=2, random_state=333)
clf = clf.fit(signal.reshape(-1, 1))
# Get predicted probabilities
probability = clf.predict_proba(signal.reshape(-1, 1))[:, np.argmax(clf.means_[:, 0])]
binary = np.zeros(len(signal))
binary[probability >= threshold] = 1
return binary
示例6: set_gmm_param
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import mixture [as 別名]
def set_gmm_param(self,probc,meanc,varc):
"""
Sets the GMM parameters for the mixture estimator
"""
nc = len(probc)
if self.mix is None:
# If the mixture estimator does not exist, create it
# First, create the component Gaussian estimators
est_list = []
for i in range(nc):
esti = GaussEst(meanc[i], varc[i], self.shape,
var_axes = self.var_axes, zmean_axes='all',
is_complex=self.is_complex, map_est=self.map_est)
est_list.append(esti)
# Create the mixture
self.mix = MixEst(est_list,w=probc)
else:
# If the mixture distribution is already created,
# set the parameters of the mixture estimator
self.probc = probc
self.mix.w = np.copy(probc)
for i in range(nc):
esti = self.mix.est_list[i]
if not self.mean_fix[i]:
esti.zmean = meanc[i]
if not self.var_fix[i]:
esti.zvar = np.copy(varc[i])
示例7: update_gmm_em
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import mixture [as 別名]
def update_gmm_em(self):
"""
Updates the GMM parameters using EM estimation
"""
# Get the posterior probabilities, means and variances from the mixture
# estimator. The lists have one element for each component in the mixture
prob_list = self.mix.prob
zmean_list = self.mix.zmean_list
zvar_list = self.mix.zvar_list
# Compute new cluster probabilities mean and variances
nc = len(prob_list)
probc = np.zeros(nc)
meanc = np.zeros(nc)
varc = []
for i in range(nc):
probc[i] = np.mean(prob_list[i])
meanc[i] = np.mean(prob_list[i]*zmean_list[i])/probc[i]
dsq = zvar_list[i] + np.abs((zmean_list[i]-meanc[i]))**2
varci = np.mean((prob_list[i]*dsq)/probc[i],axis=self.var_axes)
varci = np.maximum(varci, self.zvarmin)
varc.append(varci)
# Set the parameters
self.set_gmm_param(probc,meanc,varc)
示例8: train_singlepath
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import mixture [as 別名]
def train_singlepath(self, tar_jnt):
"""Fit GMM parameter based on single-path training
M-step :
Update GMM parameter using `self.log_resp`, and `tar_jnt`
Parameters
----------
tar_jnt: array, shape(`T`, `tar_dim`)
Joint feature vector of original and target feature vector
consisting of static and delta components, which will be modeled.
Returns
-------
param :
Sklean-based model parameters of the GMM
"""
if self.covtype == 'full':
single_param = sklearn.mixture.GaussianMixture(
n_components=self.n_mix,
covariance_type=self.covtype,
max_iter=1)
elif self.covtype == 'block_diag':
single_param = BlockDiagonalGaussianMixture(
n_mix=self.n_mix,
n_iter=self.n_iter)
else:
raise ValueError('Covariance type should be full or block_diag')
# initialize target single-path param
single_param._initialize_parameters(tar_jnt, self.random_state)
# perform m-step
single_param._m_step(tar_jnt, self.log_resp)
return single_param
示例9: _set_Ab
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import mixture [as 別名]
def _set_Ab(self):
# calculate A and b from self.jmean, self.jcov
sddim = self.jmean.shape[1] // 2
# calculate inverse covariance for covariance XX in each mixture
self.covXXinv = np.zeros((self.n_mix, sddim, sddim))
for m in range(self.n_mix):
self.covXXinv[m] = np.linalg.inv(self.covXX[m])
# calculate A, b, and conditional covariance given X
self.A = np.zeros((self.n_mix, sddim, sddim))
self.b = np.zeros((self.n_mix, sddim))
self.cond_cov_inv = np.zeros((self.n_mix, sddim, sddim))
for m in range(self.n_mix):
# calculate A (i.e., A = yxcov_m * xxcov_m^-1)
self.A[m] = self.covYX[m] @ self.covXXinv[m]
# calculate b (i.e., b = mean^Y - A * mean^X)
self.b[m] = self.meanY[m] - self.A[m] @ self.meanX[m]
# calculate conditional covariance
# (i.e., cov^(Y|X)^-1 = (yycov - A * xycov)^-1)
self.cond_cov_inv[m] = np.linalg.inv(self.covYY[
m] - self.A[m] @ self.covXY[m])
return
示例10: _set_pX
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import mixture [as 別名]
def _set_pX(self):
# probability density function of X
self.pX = sklearn.mixture.GaussianMixture(
n_components=self.n_mix, covariance_type='full')
self.pX.weights_ = self.w
self.pX.means_ = self.meanX
self.pX.covariances_ = self.covXX
# following function is required to estimate porsterior
self.pX.precisions_cholesky_ = _compute_precision_cholesky(
self.covXX, 'full')
return
示例11: __init__
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import mixture [as 別名]
def __init__(self, documents: List[List[str]], cluster_size: int, sparsity_percentage: float, gaussian_mixture_kwargs: Dict[Any, Any],
dictionary: gensim.corpora.Dictionary, w2v: Union[FastText, Word2Vec]) -> None:
"""
:param documents: documents for training.
:param cluster_size: word cluster size.
:param sparsity_percentage: sparsity percentage. This must be in [0, 1].
:param gaussian_mixture_kwargs: Arguments to build `sklearn.mixture.GaussianMixture` except cluster_size. Please see `sklearn.mixture.GaussianMixture.__init__` for details.
:param dictionary: `gensim.corpora.Dictionary`.
"""
logger.info('_build_dictionary...')
self._dictionary = dictionary
vocabulary_size = len(self._dictionary.token2id)
embedding_size = w2v.wv.vector_size
logger.info('_build_word_embeddings...')
self._word_embeddings = self._build_word_embeddings(self._dictionary, w2v)
assert self._word_embeddings.shape == (vocabulary_size, embedding_size)
logger.info('_build_word_cluster_probabilities...')
self._word_cluster_probabilities = self._build_word_cluster_probabilities(self._word_embeddings, cluster_size, gaussian_mixture_kwargs)
assert self._word_cluster_probabilities.shape == (vocabulary_size, cluster_size)
logger.info('_build_idf...')
self._idf = self._build_idf(self._dictionary)
assert self._idf.shape == (vocabulary_size, )
logger.info('_build_word_cluster_vectors...')
word_cluster_vectors = self._build_word_cluster_vectors(self._word_embeddings, self._word_cluster_probabilities)
assert word_cluster_vectors.shape == (vocabulary_size, cluster_size, embedding_size)
logger.info('_build_word_topic_vectors...')
word_topic_vectors = self._build_word_topic_vectors(self._idf, word_cluster_vectors)
assert word_topic_vectors.shape == (vocabulary_size, (cluster_size * embedding_size))
logger.info('_build_sparsity_threshold...')
self._sparse_threshold = self._build_sparsity_threshold(word_topic_vectors, self._dictionary, documents, sparsity_percentage)
示例12: __init__
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import mixture [as 別名]
def __init__(self, n_components=2, **kwargs):
self.random_state = None
self.bayesian_mixture = sklearn.mixture.BayesianGaussianMixture(
n_components,
weight_concentration_prior_type='dirichlet_distribution',
random_state=self.random_state, **kwargs)
# taken from check_fitted function of BaysianGaussianMixture in the sklearn repository
self.parametrization = ('covariances_', 'means_', 'weight_concentration_', 'weights_',
'mean_precision_', 'degrees_of_freedom_', 'precisions_', 'precisions_cholesky_')
self.n_components = n_components
示例13: signal_binarize
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import mixture [as 別名]
def signal_binarize(signal, method="threshold", threshold="auto"):
"""Binarize a continuous signal.
Convert a continuous signal into zeros and ones depending on a given threshold.
Parameters
----------
signal : Union[list, np.array, pd.Series]
The signal (i.e., a time series) in the form of a vector of values.
method : str
The algorithm used to discriminate between the two states. Can be one of 'mixture' (default) or
'threshold'. If 'mixture', will use a Gaussian Mixture Model to categorize between the two states.
If 'threshold', will consider as activated all points which value is superior to the threshold.
threshold : float
If `method` is 'mixture', then it corresponds to the minimum probability required to be considered
as activated (if 'auto', then 0.5). If `method` is 'threshold', then it corresponds to the minimum
amplitude to detect as onset. If "auto", takes the value between the max and the min.
Returns
-------
list
A list or array depending on the type passed.
Examples
--------
>>> import numpy as np
>>> import pandas as pd
>>> import neurokit2 as nk
>>>
>>> signal = np.cos(np.linspace(start=0, stop=20, num=1000))
>>> binary = nk.signal_binarize(signal)
>>> fig = pd.DataFrame({"Raw": signal, "Binary": binary}).plot()
>>> fig #doctest: +SKIP
"""
# Return appropriate type
if isinstance(signal, list):
binary = _signal_binarize(np.array(signal), method=method, threshold=threshold)
signal = list(binary)
elif isinstance(signal, pd.Series):
signal = signal.copy() # Avoid annoying pandas warning
binary = _signal_binarize(signal.values, method=method, threshold=threshold)
signal[:] = binary
else:
signal = _signal_binarize(signal, method=method, threshold=threshold)
return signal