當前位置: 首頁>>代碼示例>>Python>>正文


Python mixture.GaussianMixture方法代碼示例

本文整理匯總了Python中sklearn.mixture.GaussianMixture方法的典型用法代碼示例。如果您正苦於以下問題:Python mixture.GaussianMixture方法的具體用法?Python mixture.GaussianMixture怎麽用?Python mixture.GaussianMixture使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.mixture的用法示例。


在下文中一共展示了mixture.GaussianMixture方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: detection_with_gaussian_mixture

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GaussianMixture [as 別名]
def detection_with_gaussian_mixture(image_set):
    """

    :param image_set: The bottleneck values of the relevant images.
    :return: Predictions vector
    """

    # Might achieve, better results by initializing weights, or means, given we know when we introduce noisy labels
    clf = mixture.GaussianMixture(n_components=2)

    clf.fit(image_set)

    predictions = clf.predict(image_set)
    predictions = normalize_predictions(predictions)

    return predictions 
開發者ID:GuillaumeErhard,項目名稱:ImageSetCleaner,代碼行數:18,代碼來源:predicting.py

示例2: _evaluate_gmm_likelihood

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GaussianMixture [as 別名]
def _evaluate_gmm_likelihood(train, test, metadata, components=[10, 30]):
    results = list()
    for n_components in components:
        gmm = GaussianMixture(n_components, covariance_type='diag')
        LOGGER.info('Evaluating using %s', gmm)
        gmm.fit(test)
        l1 = gmm.score(train)

        gmm.fit(train)
        l2 = gmm.score(test)

        results.append({
            "name": repr(gmm),
            "syn_likelihood": l1,
            "test_likelihood": l2,
        })

    return pd.DataFrame(results) 
開發者ID:sdv-dev,項目名稱:SDGym,代碼行數:20,代碼來源:evaluate.py

示例3: gen_exp_name

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GaussianMixture [as 別名]
def gen_exp_name(model_class, model_kwargs):
    """Generates experiment name from model class and parameters.

    :param model_class: (type) the class, one of GaussianMixture, PCAPreDensity or KernelDensity.
    :param model_kwargs: (dict) constructor arguments to the class.
    :return A string succinctly encoding the class and parameters."""
    if model_class == GaussianMixture:
        n_components = model_kwargs.get("n_components", 1)
        covariance_type = model_kwargs.get("covariance_type", "full")
        return f"gmm_{n_components}_components_{covariance_type}"
    elif model_class == PCAPreDensity:
        if model_kwargs["density_class"] == KernelDensity:
            return "pca_kde"
        elif model_kwargs["density_class"] == GaussianMixture:
            return "pca_gmm"
        else:
            return "pca_unknown"
    elif model_class == KernelDensity:
        return "kde"
    else:
        return "default" 
開發者ID:HumanCompatibleAI,項目名稱:adversarial-policies,代碼行數:23,代碼來源:fit_density.py

示例4: clustering_scores

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GaussianMixture [as 別名]
def clustering_scores(self, prediction_algorithm: str = "knn") -> Tuple:
        if self.gene_dataset.n_labels > 1:
            latent, _, labels = self.get_latent()
            if prediction_algorithm == "knn":
                labels_pred = KMeans(
                    self.gene_dataset.n_labels, n_init=200
                ).fit_predict(
                    latent
                )  # n_jobs>1 ?
            elif prediction_algorithm == "gmm":
                gmm = GMM(self.gene_dataset.n_labels)
                gmm.fit(latent)
                labels_pred = gmm.predict(latent)

            asw_score = silhouette_score(latent, labels)
            nmi_score = NMI(labels, labels_pred)
            ari_score = ARI(labels, labels_pred)
            uca_score = unsupervised_clustering_accuracy(labels, labels_pred)[0]
            logger.debug(
                "Clustering Scores:\nSilhouette: %.4f\nNMI: %.4f\nARI: %.4f\nUCA: %.4f"
                % (asw_score, nmi_score, ari_score, uca_score)
            )
            return asw_score, nmi_score, ari_score, uca_score 
開發者ID:YosefLab,項目名稱:scVI,代碼行數:25,代碼來源:posterior.py

示例5: differential_entropies

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GaussianMixture [as 別名]
def differential_entropies(X, labels):
    n_samples, n_features = X.shape
    
    labels = np.array(labels)
    names = sorted(set(labels))

    entropies = []
    
    for name in names:
        name_idx = np.where(labels == name)[0]

        gm = GaussianMixture().fit(X[name_idx, :])

        mn = multivariate_normal(
            mean=gm.means_.flatten(),
            cov=gm.covariances_.reshape(n_features, n_features)
        )

        entropies.append(mn.entropy())

    probs = softmax(entropies)

    for name, entropy, prob in zip(names, entropies, probs):
        #print('{}\t{}\t{}'.format(name, entropy, prob))
        print('{}\t{}'.format(name, entropy)) 
開發者ID:brianhie,項目名稱:geosketch,代碼行數:27,代碼來源:differential_entropies.py

示例6: determineComponents

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GaussianMixture [as 別名]
def determineComponents(data):
	X,Y = preparingData(data)
	n_components = np.arange(1,10)
	bic = np.zeros(n_components.shape)

	for i,n in enumerate(n_components):
		#fit gmm to data for each value of components
		gmm = GaussianMixture(n_components=n,max_iter=200, covariance_type='diag' ,n_init=3)
		gmm.fit(X)
		#store BIC scores
		bic[i] = gmm.bic(X)

	#Therefore, Bayesian Information Criteria (BIC) is introduced as a cost function composing of 2 terms; 
	#1) minus of log-likelihood and 2) model complexity. Please see my old post. You will see that BIC prefers model 
	#that gives good result while the complexity remains small. In other words, the model whose BIC is smallest is the winner
	#plot the results
	plt.plot(bic)
	plt.show() 
開發者ID:gionanide,項目名稱:Speech_Signal_Processing_and_Classification,代碼行數:20,代碼來源:gmm.py

示例7: __init__

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GaussianMixture [as 別名]
def __init__(self, data, max_mixture=10, threshold=0.1):
        """
        Class constructor, arguments include:
            data - data to build GMM model
            max_mixture - max number of Gaussian mixtures
            threshold - probability threhold to determine fense
        """
        self.data = data
        self.thresh = threshold
        lowest_bic = np.infty
        components = 1
        bic = []
        n_components_range = range(1, max_mixture + 1)
        for n_components in n_components_range:
            # Fit a Gaussian mixture with EM
            gmm = mixture.GaussianMixture(n_components=n_components,
                                          random_state=1005)
            gmm.fit(data)
            bic.append(gmm.bic(data))
            if bic[-1] < lowest_bic:
                lowest_bic = bic[-1]
                best_gmm = gmm
                components = n_components
        log.debug('best gmm components number: %d, bic %f ', components, lowest_bic)
        self.gmm = best_gmm 
開發者ID:intel,項目名稱:platform-resource-manager,代碼行數:27,代碼來源:gmmfense.py

示例8: _fit

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GaussianMixture [as 別名]
def _fit(self, X):
        self.estimator_     = GaussianMixture(
            covariance_type = self.covariance_type,
            init_params     = self.init_params,
            max_iter        = self.max_iter,
            means_init      = self.means_init,
            n_components    = self.n_components,
            n_init          = self.n_init,
            precisions_init = self.precisions_init,
            random_state    = self.random_state,
            reg_covar       = self.reg_covar,
            tol             = self.tol,
            warm_start      = self.warm_start,
            weights_init    = self.weights_init
        ).fit(X)

        return self 
開發者ID:Y-oHr-N,項目名稱:kenchi,代碼行數:19,代碼來源:statistical.py

示例9: eval_train

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GaussianMixture [as 別名]
def eval_train(eval_loader,model,device,whichnet,queue):   
    CE = nn.CrossEntropyLoss(reduction='none')
    model.eval()
    num_iter = (len(eval_loader.dataset)//eval_loader.batch_size)+1
    losses = torch.zeros(len(eval_loader.dataset))    
    with torch.no_grad():
        for batch_idx, (inputs, targets, index) in enumerate(eval_loader):
            inputs, targets = inputs.to(device), targets.to(device,non_blocking=True) 
            outputs = model(inputs) 
            loss = CE(outputs, targets)  
            for b in range(inputs.size(0)):
                losses[index[b]]=loss[b]       
            sys.stdout.write('\n')
            sys.stdout.write('|%s Evaluating loss Iter[%3d/%3d]\t' %(whichnet,batch_idx,num_iter)) 
            sys.stdout.flush()    
                                    
    losses = (losses-losses.min())/(losses.max()-losses.min())    

    # fit a two-component GMM to the loss
    input_loss = losses.reshape(-1,1)
    gmm = GaussianMixture(n_components=2,max_iter=10,tol=1e-2,reg_covar=1e-3)
    gmm.fit(input_loss)
    prob = gmm.predict_proba(input_loss) 
    prob = prob[:,gmm.means_.argmin()]         
    queue.put(prob) 
開發者ID:LiJunnan1992,項目名稱:DivideMix,代碼行數:27,代碼來源:Train_webvision_parallel.py

示例10: eval_train

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GaussianMixture [as 別名]
def eval_train(model,all_loss):    
    model.eval()
    num_iter = (len(eval_loader.dataset)//eval_loader.batch_size)+1
    losses = torch.zeros(len(eval_loader.dataset))    
    with torch.no_grad():
        for batch_idx, (inputs, targets, index) in enumerate(eval_loader):
            inputs, targets = inputs.cuda(), targets.cuda() 
            outputs = model(inputs) 
            loss = CE(outputs, targets)  
            for b in range(inputs.size(0)):
                losses[index[b]]=loss[b]       
            sys.stdout.write('\r')
            sys.stdout.write('| Evaluating loss Iter[%3d/%3d]\t' %(batch_idx,num_iter)) 
            sys.stdout.flush()    
                                    
    losses = (losses-losses.min())/(losses.max()-losses.min())    
    all_loss.append(losses)

    # fit a two-component GMM to the loss
    input_loss = losses.reshape(-1,1)
    gmm = GaussianMixture(n_components=2,max_iter=10,tol=1e-2,reg_covar=5e-4)
    gmm.fit(input_loss)
    prob = gmm.predict_proba(input_loss) 
    prob = prob[:,gmm.means_.argmin()]         
    return prob,all_loss 
開發者ID:LiJunnan1992,項目名稱:DivideMix,代碼行數:27,代碼來源:Train_webvision.py

示例11: clusterize

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GaussianMixture [as 別名]
def clusterize(points, n_components=2, covariance_type='tied',
               centers=None, weights=None, output=None, random_state=1000):
    if centers is not None:
        n_components = len(centers)

    if output is None:
        output = points

    if len(points) < 2:
        return [list(output)]

    gmm = GaussianMixture(n_components=n_components,
                          covariance_type=covariance_type,
                          means_init=centers,
                          weights_init=weights,
                          random_state=random_state)
    gmm.fit(points)
    labels = gmm.predict(points)

    clusters = defaultdict(list)
    for label, point in zip(labels, output):
        clusters[label].append(point)

    return sorted(clusters.values(), key=lambda x: len(x), reverse=True) 
開發者ID:Giphy,項目名稱:celeb-detection-oss,代碼行數:26,代碼來源:clustering.py

示例12: initialize_gmm

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GaussianMixture [as 別名]
def initialize_gmm(self, dataloader):
        use_cuda = torch.cuda.is_available()
        if use_cuda:
            self.cuda()

        self.eval()
        data = []
        for batch_idx, (inputs, _) in enumerate(dataloader):
            inputs = inputs.view(inputs.size(0), -1).float()
            if use_cuda:
                inputs = inputs.cuda()
            inputs = Variable(inputs)
            z, outputs, mu, logvar = self.forward(inputs)
            data.append(z.data.cpu().numpy())
        data = np.concatenate(data)
        gmm = GaussianMixture(n_components=self.n_centroids,covariance_type='diag')
        gmm.fit(data)
        self.u_p.data.copy_(torch.from_numpy(gmm.means_.T.astype(np.float32)))
        self.lambda_p.data.copy_(torch.from_numpy(gmm.covariances_.T.astype(np.float32))) 
開發者ID:eelxpeng,項目名稱:UnsupervisedDeepLearning-Pytorch,代碼行數:21,代碼來源:vade.py

示例13: cluster_GMM

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GaussianMixture [as 別名]
def cluster_GMM(num_clusters, word_vectors):
    # Initalize a GMM object and use it for clustering.
    clf = GaussianMixture(n_components=num_clusters,
                          covariance_type="tied", init_params='kmeans', max_iter=50)
    # Get cluster assignments.
    clf.fit(word_vectors)
    idx = clf.predict(word_vectors)
    print("Clustering Done...", time.time() - start, "seconds")
    # Get probabilities of cluster assignments.
    idx_proba = clf.predict_proba(word_vectors)
    # Dump cluster assignments and probability of cluster assignments. 
    joblib.dump(idx, 'gmm_latestclusmodel_len2alldata.pkl')
    print("Cluster Assignments Saved...")

    joblib.dump(idx_proba, 'gmm_prob_latestclusmodel_len2alldata.pkl')
    print("Probabilities of Cluster Assignments Saved...")
    return (idx, idx_proba) 
開發者ID:dheeraj7596,項目名稱:SCDV,代碼行數:19,代碼來源:SCDV.py

示例14: cluster_GMM

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GaussianMixture [as 別名]
def cluster_GMM(num_clusters, word_vectors):
    # Initalize a GMM object and use it for clustering.
    clf = GaussianMixture(n_components=num_clusters,
                          covariance_type="tied", init_params='kmeans', max_iter=50)
    # Get cluster assignments.
    clf.fit(word_vectors)
    idx = clf.predict(word_vectors)
    print("Clustering Done...", time.time() - start, "seconds")
    # Get probabilities of cluster assignments.
    idx_proba = clf.predict_proba(word_vectors)
    # Dump cluster assignments and probability of cluster assignments.
    joblib.dump(idx, 'gmm_latestclusmodel_len2alldata.pkl')
    print("Cluster Assignments Saved...")

    joblib.dump(idx_proba, 'gmm_prob_latestclusmodel_len2alldata.pkl')
    print("Probabilities of Cluster Assignments Saved...")
    return (idx, idx_proba) 
開發者ID:dheeraj7596,項目名稱:SCDV,代碼行數:19,代碼來源:SCDV.py

示例15: gmm

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GaussianMixture [as 別名]
def gmm(n_clusters, samples):

    """
    Run GMM clustering on vertex coordinates.

    Parameters:
    - - - - -
    n_clusters : int
        number of clusters to generate
    samples : array
        Euclidean-space coordinates of vertices
    """

    # Fit Gaussian Mixture Model
    gmm = mixture.GaussianMixture(
        n_components=n_clusters, covariance_type='tied', max_iter=1000,
        init_params='kmeans', verbose=0)
    gmm.fit(samples)

    labels = gmm.predict(samples)
    labels = labels.astype(np.int32)+1

    return labels 
開發者ID:miykael,項目名稱:parcellation_fragmenter,代碼行數:25,代碼來源:clusterings.py


注:本文中的sklearn.mixture.GaussianMixture方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。