當前位置: 首頁>>代碼示例>>Python>>正文


Python mixture.BayesianGaussianMixture方法代碼示例

本文整理匯總了Python中sklearn.mixture.BayesianGaussianMixture方法的典型用法代碼示例。如果您正苦於以下問題:Python mixture.BayesianGaussianMixture方法的具體用法?Python mixture.BayesianGaussianMixture怎麽用?Python mixture.BayesianGaussianMixture使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.mixture的用法示例。


在下文中一共展示了mixture.BayesianGaussianMixture方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_monotonic_likelihood

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def test_monotonic_likelihood():
    # We check that each step of the each step of variational inference without
    # regularization improve monotonically the training set of the bound
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng, scale=20)
    n_components = rand_data.n_components

    for prior_type in PRIOR_TYPE:
        for covar_type in COVARIANCE_TYPE:
            X = rand_data.X[covar_type]
            bgmm = BayesianGaussianMixture(
                weight_concentration_prior_type=prior_type,
                n_components=2 * n_components, covariance_type=covar_type,
                warm_start=True, max_iter=1, random_state=rng, tol=1e-4)
            current_lower_bound = -np.infty
            # Do one training iteration at a time so we can make sure that the
            # training log likelihood increases after each iteration.
            for _ in range(600):
                prev_lower_bound = current_lower_bound
                current_lower_bound = bgmm.fit(X).lower_bound_
                assert_greater_equal(current_lower_bound, prev_lower_bound)

                if bgmm.converged_:
                    break
            assert(bgmm.converged_) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:27,代碼來源:test_bayesian_mixture.py

示例2: test_invariant_translation

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def test_invariant_translation():
    # We check here that adding a constant in the data change correctly the
    # parameters of the mixture
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng, scale=100)
    n_components = 2 * rand_data.n_components

    for prior_type in PRIOR_TYPE:
        for covar_type in COVARIANCE_TYPE:
            X = rand_data.X[covar_type]
            bgmm1 = BayesianGaussianMixture(
                weight_concentration_prior_type=prior_type,
                n_components=n_components, max_iter=100, random_state=0,
                tol=1e-3, reg_covar=0).fit(X)
            bgmm2 = BayesianGaussianMixture(
                weight_concentration_prior_type=prior_type,
                n_components=n_components, max_iter=100, random_state=0,
                tol=1e-3, reg_covar=0).fit(X + 100)

            assert_almost_equal(bgmm1.means_, bgmm2.means_ - 100)
            assert_almost_equal(bgmm1.weights_, bgmm2.weights_)
            assert_almost_equal(bgmm1.covariances_, bgmm2.covariances_) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:24,代碼來源:test_bayesian_mixture.py

示例3: test_bayesian_mixture_fit_predict

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def test_bayesian_mixture_fit_predict(seed, max_iter, tol):
    rng = np.random.RandomState(seed)
    rand_data = RandomData(rng, scale=7)
    n_components = 2 * rand_data.n_components

    for covar_type in COVARIANCE_TYPE:
        bgmm1 = BayesianGaussianMixture(n_components=n_components,
                                        max_iter=max_iter, random_state=rng,
                                        tol=tol, reg_covar=0)
        bgmm1.covariance_type = covar_type
        bgmm2 = copy.deepcopy(bgmm1)
        X = rand_data.X[covar_type]

        Y_pred1 = bgmm1.fit(X).predict(X)
        Y_pred2 = bgmm2.fit_predict(X)
        assert_array_equal(Y_pred1, Y_pred2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:18,代碼來源:test_bayesian_mixture.py

示例4: test

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def test(epoch, prior):
    ans = np.zeros((50, 10))
    for data, lab in test_loader:
        C = prior.predict(data.numpy().reshape(data.numpy().shape[0],-1))
        for i in xrange(len(lab)):
            ans[C[i],lab[i]]+=1
    print(ans)
    s = np.sum(ans)
    v = 0
    for i in xrange(ans.shape[0]):
        for j in xrange(ans.shape[1]):
            if ans[i,j]>0:
                v += ans[i,j]/s*np.log(ans[i,j]/s/(np.sum(ans[i,:])/s)/(np.sum(ans[:,j])/s))
    print("Mutual information: "+str(v))

#prior = BayesianGaussianMixture(n_components=100, covariance_type='diag') 
開發者ID:bobchennan,項目名稱:VAE_NBP,代碼行數:18,代碼來源:dp.py

示例5: _fit_continuous

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def _fit_continuous(self, column, data):
        gm = BayesianGaussianMixture(
            self.n_clusters,
            weight_concentration_prior_type='dirichlet_process',
            weight_concentration_prior=0.001,
            n_init=1
        )
        gm.fit(data)
        components = gm.weights_ > self.epsilon
        num_components = components.sum()

        return {
            'name': column,
            'model': gm,
            'components': components,
            'output_info': [(1, 'tanh'), (num_components, 'softmax')],
            'output_dimensions': 1 + num_components,
        } 
開發者ID:sdv-dev,項目名稱:CTGAN,代碼行數:20,代碼來源:transformer.py

示例6: test_bayesian_mixture_covariance_type

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def test_bayesian_mixture_covariance_type():
    rng = np.random.RandomState(0)
    n_samples, n_features = 10, 2
    X = rng.rand(n_samples, n_features)

    covariance_type = 'bad_covariance_type'
    bgmm = BayesianGaussianMixture(covariance_type=covariance_type,
                                   random_state=rng)
    assert_raise_message(ValueError,
                         "Invalid value for 'covariance_type': %s "
                         "'covariance_type' should be in "
                         "['spherical', 'tied', 'diag', 'full']"
                         % covariance_type, bgmm.fit, X) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:15,代碼來源:test_bayesian_mixture.py

示例7: test_bayesian_mixture_weight_concentration_prior_type

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def test_bayesian_mixture_weight_concentration_prior_type():
    rng = np.random.RandomState(0)
    n_samples, n_features = 10, 2
    X = rng.rand(n_samples, n_features)

    bad_prior_type = 'bad_prior_type'
    bgmm = BayesianGaussianMixture(
        weight_concentration_prior_type=bad_prior_type, random_state=rng)
    assert_raise_message(ValueError,
                         "Invalid value for 'weight_concentration_prior_type':"
                         " %s 'weight_concentration_prior_type' should be in "
                         "['dirichlet_process', 'dirichlet_distribution']"
                         % bad_prior_type, bgmm.fit, X) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:15,代碼來源:test_bayesian_mixture.py

示例8: test_bayesian_mixture_weights_prior_initialisation

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def test_bayesian_mixture_weights_prior_initialisation():
    rng = np.random.RandomState(0)
    n_samples, n_components, n_features = 10, 5, 2
    X = rng.rand(n_samples, n_features)

    # Check raise message for a bad value of weight_concentration_prior
    bad_weight_concentration_prior_ = 0.
    bgmm = BayesianGaussianMixture(
        weight_concentration_prior=bad_weight_concentration_prior_,
        random_state=0)
    assert_raise_message(ValueError,
                         "The parameter 'weight_concentration_prior' "
                         "should be greater than 0., but got %.3f."
                         % bad_weight_concentration_prior_,
                         bgmm.fit, X)

    # Check correct init for a given value of weight_concentration_prior
    weight_concentration_prior = rng.rand()
    bgmm = BayesianGaussianMixture(
        weight_concentration_prior=weight_concentration_prior,
        random_state=rng).fit(X)
    assert_almost_equal(weight_concentration_prior,
                        bgmm.weight_concentration_prior_)

    # Check correct init for the default value of weight_concentration_prior
    bgmm = BayesianGaussianMixture(n_components=n_components,
                                   random_state=rng).fit(X)
    assert_almost_equal(1. / n_components, bgmm.weight_concentration_prior_) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:30,代碼來源:test_bayesian_mixture.py

示例9: test_bayesian_mixture_check_is_fitted

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def test_bayesian_mixture_check_is_fitted():
    rng = np.random.RandomState(0)
    n_samples, n_features = 10, 2

    # Check raise message
    bgmm = BayesianGaussianMixture(random_state=rng)
    X = rng.rand(n_samples, n_features)
    assert_raise_message(ValueError,
                         'This BayesianGaussianMixture instance is not '
                         'fitted yet.', bgmm.score, X) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:12,代碼來源:test_bayesian_mixture.py

示例10: test_check_covariance_precision

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def test_check_covariance_precision():
    # We check that the dot product of the covariance and the precision
    # matrices is identity.
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng, scale=7)
    n_components, n_features = 2 * rand_data.n_components, 2

    # Computation of the full_covariance
    bgmm = BayesianGaussianMixture(n_components=n_components,
                                   max_iter=100, random_state=rng, tol=1e-3,
                                   reg_covar=0)
    for covar_type in COVARIANCE_TYPE:
        bgmm.covariance_type = covar_type
        bgmm.fit(rand_data.X[covar_type])

        if covar_type == 'full':
            for covar, precision in zip(bgmm.covariances_, bgmm.precisions_):
                assert_almost_equal(np.dot(covar, precision),
                                    np.eye(n_features))
        elif covar_type == 'tied':
            assert_almost_equal(np.dot(bgmm.covariances_, bgmm.precisions_),
                                np.eye(n_features))

        elif covar_type == 'diag':
            assert_almost_equal(bgmm.covariances_ * bgmm.precisions_,
                                np.ones((n_components, n_features)))

        else:
            assert_almost_equal(bgmm.covariances_ * bgmm.precisions_,
                                np.ones(n_components)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:32,代碼來源:test_bayesian_mixture.py

示例11: test_bayesian_mixture_predict_predict_proba

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def test_bayesian_mixture_predict_predict_proba():
    # this is the same test as test_gaussian_mixture_predict_predict_proba()
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng)
    for prior_type in PRIOR_TYPE:
        for covar_type in COVARIANCE_TYPE:
            X = rand_data.X[covar_type]
            Y = rand_data.Y
            bgmm = BayesianGaussianMixture(
                n_components=rand_data.n_components,
                random_state=rng,
                weight_concentration_prior_type=prior_type,
                covariance_type=covar_type)

            # Check a warning message arrive if we don't do fit
            assert_raise_message(NotFittedError,
                                 "This BayesianGaussianMixture instance"
                                 " is not fitted yet. Call 'fit' with "
                                 "appropriate arguments before using "
                                 "this method.", bgmm.predict, X)

            bgmm.fit(X)
            Y_pred = bgmm.predict(X)
            Y_pred_proba = bgmm.predict_proba(X).argmax(axis=1)
            assert_array_equal(Y_pred, Y_pred_proba)
            assert_greater_equal(adjusted_rand_score(Y, Y_pred), .95) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:28,代碼來源:test_bayesian_mixture.py

示例12: train

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def train(epoch, prior):
    model.train()
    train_loss = 0
    #prior = BayesianGaussianMixture(n_components=1, covariance_type='diag')
    tmp = []
    for (data,_) in train_loader:
        data = Variable(data)
        if args.cuda:
            data = data.cuda()
        recon_batch, mu, logvar, z = model(data)
        tmp.append(z.cpu().data.numpy())
    print('Update Prior')
    prior.fit(np.vstack(tmp))
    print('prior: '+str(prior.weights_))
    for batch_idx, (data, _) in enumerate(train_loader):
        data = Variable(data)
        if args.cuda:
            data = data.cuda()
        optimizer.zero_grad()
        recon_batch, mu, logvar, z = model(data)
        loss = loss_function(recon_batch, data, mu, logvar, prior, z)
        loss.backward()
        train_loss += loss.data[0]
        optimizer.step()
        #if batch_idx % args.log_interval == 0:
        #    print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
        #        epoch, batch_idx * len(data), len(train_loader.dataset),
        #        100. * batch_idx / len(train_loader),
        #        loss.data[0] / len(data)))

    print('====> Epoch: {} Average loss: {:.4f}'.format(
          epoch, train_loss / len(train_loader.dataset)))
    return prior 
開發者ID:bobchennan,項目名稱:VAE_NBP,代碼行數:35,代碼來源:vae_dp.py

示例13: train

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def train(epoch, prior):
    prior = BayesianGaussianMixture(n_components=50, covariance_type='diag', n_init=5, max_iter=1000)
    tmp = []
    for (data,_) in train_loader:
        #print(data.numpy().shape)
        tmp.append(data.numpy().reshape(data.numpy().shape[0],-1))
    prior.fit(np.vstack(tmp))
    return prior 
開發者ID:bobchennan,項目名稱:VAE_NBP,代碼行數:10,代碼來源:dp.py

示例14: create_model

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def create_model(samples_x, samples_y_aggregation, percentage_goodbatch=0.34):
    '''
    Create the Gaussian Mixture Model
    '''
    samples = [samples_x[i] + [samples_y_aggregation[i]]
               for i in range(0, len(samples_x))]

    # Sorts so that we can get the top samples
    samples = sorted(samples, key=itemgetter(-1))
    samples_goodbatch_size = int(len(samples) * percentage_goodbatch)
    samples_goodbatch = samples[0:samples_goodbatch_size]
    samples_badbatch = samples[samples_goodbatch_size:]

    samples_x_goodbatch = [sample_goodbatch[0:-1]
                           for sample_goodbatch in samples_goodbatch]
    #samples_y_goodbatch = [sample_goodbatch[-1] for sample_goodbatch in samples_goodbatch]
    samples_x_badbatch = [sample_badbatch[0:-1]
                          for sample_badbatch in samples_badbatch]

    # === Trains GMM clustering models === #
    #sys.stderr.write("[%s] Train GMM's GMM model\n" % (os.path.basename(__file__)))
    bgmm_goodbatch = mm.BayesianGaussianMixture(
        n_components=max(1, samples_goodbatch_size - 1))
    bad_n_components = max(1, len(samples_x) - samples_goodbatch_size - 1)
    bgmm_badbatch = mm.BayesianGaussianMixture(n_components=bad_n_components)
    bgmm_goodbatch.fit(samples_x_goodbatch)
    bgmm_badbatch.fit(samples_x_badbatch)

    model = {}
    model['clusteringmodel_good'] = bgmm_goodbatch
    model['clusteringmodel_bad'] = bgmm_badbatch
    return model 
開發者ID:microsoft,項目名稱:nni,代碼行數:34,代碼來源:CreateModel.py

示例15: fit

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def fit(self, data, categorical_columns=tuple(), ordinal_columns=tuple()):
        self.meta = self.get_metadata(data, categorical_columns, ordinal_columns)
        model = []

        self.output_info = []
        self.output_dim = 0
        self.components = []
        for id_, info in enumerate(self.meta):
            if info['type'] == CONTINUOUS:
                gm = BayesianGaussianMixture(
                    self.n_clusters,
                    weight_concentration_prior_type='dirichlet_process',
                    weight_concentration_prior=0.001,
                    n_init=1)
                gm.fit(data[:, id_].reshape([-1, 1]))
                model.append(gm)
                comp = gm.weights_ > self.eps
                self.components.append(comp)

                self.output_info += [(1, 'tanh'), (np.sum(comp), 'softmax')]
                self.output_dim += 1 + np.sum(comp)
            else:
                model.append(None)
                self.components.append(None)
                self.output_info += [(info['size'], 'softmax')]
                self.output_dim += info['size']

        self.model = model 
開發者ID:sdv-dev,項目名稱:SDGym,代碼行數:30,代碼來源:utils.py


注:本文中的sklearn.mixture.BayesianGaussianMixture方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。