本文整理匯總了Python中sklearn.mixture.BayesianGaussianMixture方法的典型用法代碼示例。如果您正苦於以下問題:Python mixture.BayesianGaussianMixture方法的具體用法?Python mixture.BayesianGaussianMixture怎麽用?Python mixture.BayesianGaussianMixture使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.mixture
的用法示例。
在下文中一共展示了mixture.BayesianGaussianMixture方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_monotonic_likelihood
# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def test_monotonic_likelihood():
# We check that each step of the each step of variational inference without
# regularization improve monotonically the training set of the bound
rng = np.random.RandomState(0)
rand_data = RandomData(rng, scale=20)
n_components = rand_data.n_components
for prior_type in PRIOR_TYPE:
for covar_type in COVARIANCE_TYPE:
X = rand_data.X[covar_type]
bgmm = BayesianGaussianMixture(
weight_concentration_prior_type=prior_type,
n_components=2 * n_components, covariance_type=covar_type,
warm_start=True, max_iter=1, random_state=rng, tol=1e-4)
current_lower_bound = -np.infty
# Do one training iteration at a time so we can make sure that the
# training log likelihood increases after each iteration.
for _ in range(600):
prev_lower_bound = current_lower_bound
current_lower_bound = bgmm.fit(X).lower_bound_
assert_greater_equal(current_lower_bound, prev_lower_bound)
if bgmm.converged_:
break
assert(bgmm.converged_)
示例2: test_invariant_translation
# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def test_invariant_translation():
# We check here that adding a constant in the data change correctly the
# parameters of the mixture
rng = np.random.RandomState(0)
rand_data = RandomData(rng, scale=100)
n_components = 2 * rand_data.n_components
for prior_type in PRIOR_TYPE:
for covar_type in COVARIANCE_TYPE:
X = rand_data.X[covar_type]
bgmm1 = BayesianGaussianMixture(
weight_concentration_prior_type=prior_type,
n_components=n_components, max_iter=100, random_state=0,
tol=1e-3, reg_covar=0).fit(X)
bgmm2 = BayesianGaussianMixture(
weight_concentration_prior_type=prior_type,
n_components=n_components, max_iter=100, random_state=0,
tol=1e-3, reg_covar=0).fit(X + 100)
assert_almost_equal(bgmm1.means_, bgmm2.means_ - 100)
assert_almost_equal(bgmm1.weights_, bgmm2.weights_)
assert_almost_equal(bgmm1.covariances_, bgmm2.covariances_)
示例3: test_bayesian_mixture_fit_predict
# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def test_bayesian_mixture_fit_predict(seed, max_iter, tol):
rng = np.random.RandomState(seed)
rand_data = RandomData(rng, scale=7)
n_components = 2 * rand_data.n_components
for covar_type in COVARIANCE_TYPE:
bgmm1 = BayesianGaussianMixture(n_components=n_components,
max_iter=max_iter, random_state=rng,
tol=tol, reg_covar=0)
bgmm1.covariance_type = covar_type
bgmm2 = copy.deepcopy(bgmm1)
X = rand_data.X[covar_type]
Y_pred1 = bgmm1.fit(X).predict(X)
Y_pred2 = bgmm2.fit_predict(X)
assert_array_equal(Y_pred1, Y_pred2)
示例4: test
# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def test(epoch, prior):
ans = np.zeros((50, 10))
for data, lab in test_loader:
C = prior.predict(data.numpy().reshape(data.numpy().shape[0],-1))
for i in xrange(len(lab)):
ans[C[i],lab[i]]+=1
print(ans)
s = np.sum(ans)
v = 0
for i in xrange(ans.shape[0]):
for j in xrange(ans.shape[1]):
if ans[i,j]>0:
v += ans[i,j]/s*np.log(ans[i,j]/s/(np.sum(ans[i,:])/s)/(np.sum(ans[:,j])/s))
print("Mutual information: "+str(v))
#prior = BayesianGaussianMixture(n_components=100, covariance_type='diag')
示例5: _fit_continuous
# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def _fit_continuous(self, column, data):
gm = BayesianGaussianMixture(
self.n_clusters,
weight_concentration_prior_type='dirichlet_process',
weight_concentration_prior=0.001,
n_init=1
)
gm.fit(data)
components = gm.weights_ > self.epsilon
num_components = components.sum()
return {
'name': column,
'model': gm,
'components': components,
'output_info': [(1, 'tanh'), (num_components, 'softmax')],
'output_dimensions': 1 + num_components,
}
示例6: test_bayesian_mixture_covariance_type
# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def test_bayesian_mixture_covariance_type():
rng = np.random.RandomState(0)
n_samples, n_features = 10, 2
X = rng.rand(n_samples, n_features)
covariance_type = 'bad_covariance_type'
bgmm = BayesianGaussianMixture(covariance_type=covariance_type,
random_state=rng)
assert_raise_message(ValueError,
"Invalid value for 'covariance_type': %s "
"'covariance_type' should be in "
"['spherical', 'tied', 'diag', 'full']"
% covariance_type, bgmm.fit, X)
示例7: test_bayesian_mixture_weight_concentration_prior_type
# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def test_bayesian_mixture_weight_concentration_prior_type():
rng = np.random.RandomState(0)
n_samples, n_features = 10, 2
X = rng.rand(n_samples, n_features)
bad_prior_type = 'bad_prior_type'
bgmm = BayesianGaussianMixture(
weight_concentration_prior_type=bad_prior_type, random_state=rng)
assert_raise_message(ValueError,
"Invalid value for 'weight_concentration_prior_type':"
" %s 'weight_concentration_prior_type' should be in "
"['dirichlet_process', 'dirichlet_distribution']"
% bad_prior_type, bgmm.fit, X)
示例8: test_bayesian_mixture_weights_prior_initialisation
# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def test_bayesian_mixture_weights_prior_initialisation():
rng = np.random.RandomState(0)
n_samples, n_components, n_features = 10, 5, 2
X = rng.rand(n_samples, n_features)
# Check raise message for a bad value of weight_concentration_prior
bad_weight_concentration_prior_ = 0.
bgmm = BayesianGaussianMixture(
weight_concentration_prior=bad_weight_concentration_prior_,
random_state=0)
assert_raise_message(ValueError,
"The parameter 'weight_concentration_prior' "
"should be greater than 0., but got %.3f."
% bad_weight_concentration_prior_,
bgmm.fit, X)
# Check correct init for a given value of weight_concentration_prior
weight_concentration_prior = rng.rand()
bgmm = BayesianGaussianMixture(
weight_concentration_prior=weight_concentration_prior,
random_state=rng).fit(X)
assert_almost_equal(weight_concentration_prior,
bgmm.weight_concentration_prior_)
# Check correct init for the default value of weight_concentration_prior
bgmm = BayesianGaussianMixture(n_components=n_components,
random_state=rng).fit(X)
assert_almost_equal(1. / n_components, bgmm.weight_concentration_prior_)
示例9: test_bayesian_mixture_check_is_fitted
# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def test_bayesian_mixture_check_is_fitted():
rng = np.random.RandomState(0)
n_samples, n_features = 10, 2
# Check raise message
bgmm = BayesianGaussianMixture(random_state=rng)
X = rng.rand(n_samples, n_features)
assert_raise_message(ValueError,
'This BayesianGaussianMixture instance is not '
'fitted yet.', bgmm.score, X)
示例10: test_check_covariance_precision
# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def test_check_covariance_precision():
# We check that the dot product of the covariance and the precision
# matrices is identity.
rng = np.random.RandomState(0)
rand_data = RandomData(rng, scale=7)
n_components, n_features = 2 * rand_data.n_components, 2
# Computation of the full_covariance
bgmm = BayesianGaussianMixture(n_components=n_components,
max_iter=100, random_state=rng, tol=1e-3,
reg_covar=0)
for covar_type in COVARIANCE_TYPE:
bgmm.covariance_type = covar_type
bgmm.fit(rand_data.X[covar_type])
if covar_type == 'full':
for covar, precision in zip(bgmm.covariances_, bgmm.precisions_):
assert_almost_equal(np.dot(covar, precision),
np.eye(n_features))
elif covar_type == 'tied':
assert_almost_equal(np.dot(bgmm.covariances_, bgmm.precisions_),
np.eye(n_features))
elif covar_type == 'diag':
assert_almost_equal(bgmm.covariances_ * bgmm.precisions_,
np.ones((n_components, n_features)))
else:
assert_almost_equal(bgmm.covariances_ * bgmm.precisions_,
np.ones(n_components))
示例11: test_bayesian_mixture_predict_predict_proba
# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def test_bayesian_mixture_predict_predict_proba():
# this is the same test as test_gaussian_mixture_predict_predict_proba()
rng = np.random.RandomState(0)
rand_data = RandomData(rng)
for prior_type in PRIOR_TYPE:
for covar_type in COVARIANCE_TYPE:
X = rand_data.X[covar_type]
Y = rand_data.Y
bgmm = BayesianGaussianMixture(
n_components=rand_data.n_components,
random_state=rng,
weight_concentration_prior_type=prior_type,
covariance_type=covar_type)
# Check a warning message arrive if we don't do fit
assert_raise_message(NotFittedError,
"This BayesianGaussianMixture instance"
" is not fitted yet. Call 'fit' with "
"appropriate arguments before using "
"this method.", bgmm.predict, X)
bgmm.fit(X)
Y_pred = bgmm.predict(X)
Y_pred_proba = bgmm.predict_proba(X).argmax(axis=1)
assert_array_equal(Y_pred, Y_pred_proba)
assert_greater_equal(adjusted_rand_score(Y, Y_pred), .95)
示例12: train
# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def train(epoch, prior):
model.train()
train_loss = 0
#prior = BayesianGaussianMixture(n_components=1, covariance_type='diag')
tmp = []
for (data,_) in train_loader:
data = Variable(data)
if args.cuda:
data = data.cuda()
recon_batch, mu, logvar, z = model(data)
tmp.append(z.cpu().data.numpy())
print('Update Prior')
prior.fit(np.vstack(tmp))
print('prior: '+str(prior.weights_))
for batch_idx, (data, _) in enumerate(train_loader):
data = Variable(data)
if args.cuda:
data = data.cuda()
optimizer.zero_grad()
recon_batch, mu, logvar, z = model(data)
loss = loss_function(recon_batch, data, mu, logvar, prior, z)
loss.backward()
train_loss += loss.data[0]
optimizer.step()
#if batch_idx % args.log_interval == 0:
# print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
# epoch, batch_idx * len(data), len(train_loader.dataset),
# 100. * batch_idx / len(train_loader),
# loss.data[0] / len(data)))
print('====> Epoch: {} Average loss: {:.4f}'.format(
epoch, train_loss / len(train_loader.dataset)))
return prior
示例13: train
# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def train(epoch, prior):
prior = BayesianGaussianMixture(n_components=50, covariance_type='diag', n_init=5, max_iter=1000)
tmp = []
for (data,_) in train_loader:
#print(data.numpy().shape)
tmp.append(data.numpy().reshape(data.numpy().shape[0],-1))
prior.fit(np.vstack(tmp))
return prior
示例14: create_model
# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def create_model(samples_x, samples_y_aggregation, percentage_goodbatch=0.34):
'''
Create the Gaussian Mixture Model
'''
samples = [samples_x[i] + [samples_y_aggregation[i]]
for i in range(0, len(samples_x))]
# Sorts so that we can get the top samples
samples = sorted(samples, key=itemgetter(-1))
samples_goodbatch_size = int(len(samples) * percentage_goodbatch)
samples_goodbatch = samples[0:samples_goodbatch_size]
samples_badbatch = samples[samples_goodbatch_size:]
samples_x_goodbatch = [sample_goodbatch[0:-1]
for sample_goodbatch in samples_goodbatch]
#samples_y_goodbatch = [sample_goodbatch[-1] for sample_goodbatch in samples_goodbatch]
samples_x_badbatch = [sample_badbatch[0:-1]
for sample_badbatch in samples_badbatch]
# === Trains GMM clustering models === #
#sys.stderr.write("[%s] Train GMM's GMM model\n" % (os.path.basename(__file__)))
bgmm_goodbatch = mm.BayesianGaussianMixture(
n_components=max(1, samples_goodbatch_size - 1))
bad_n_components = max(1, len(samples_x) - samples_goodbatch_size - 1)
bgmm_badbatch = mm.BayesianGaussianMixture(n_components=bad_n_components)
bgmm_goodbatch.fit(samples_x_goodbatch)
bgmm_badbatch.fit(samples_x_badbatch)
model = {}
model['clusteringmodel_good'] = bgmm_goodbatch
model['clusteringmodel_bad'] = bgmm_badbatch
return model
示例15: fit
# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import BayesianGaussianMixture [as 別名]
def fit(self, data, categorical_columns=tuple(), ordinal_columns=tuple()):
self.meta = self.get_metadata(data, categorical_columns, ordinal_columns)
model = []
self.output_info = []
self.output_dim = 0
self.components = []
for id_, info in enumerate(self.meta):
if info['type'] == CONTINUOUS:
gm = BayesianGaussianMixture(
self.n_clusters,
weight_concentration_prior_type='dirichlet_process',
weight_concentration_prior=0.001,
n_init=1)
gm.fit(data[:, id_].reshape([-1, 1]))
model.append(gm)
comp = gm.weights_ > self.eps
self.components.append(comp)
self.output_info += [(1, 'tanh'), (np.sum(comp), 'softmax')]
self.output_dim += 1 + np.sum(comp)
else:
model.append(None)
self.components.append(None)
self.output_info += [(info['size'], 'softmax')]
self.output_dim += info['size']
self.model = model