當前位置: 首頁>>代碼示例>>Python>>正文


Python metrics.precision_score方法代碼示例

本文整理匯總了Python中sklearn.metrics.precision_score方法的典型用法代碼示例。如果您正苦於以下問題:Python metrics.precision_score方法的具體用法?Python metrics.precision_score怎麽用?Python metrics.precision_score使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.metrics的用法示例。


在下文中一共展示了metrics.precision_score方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: classification_scores

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import precision_score [as 別名]
def classification_scores(gts, preds, labels):
    accuracy        = metrics.accuracy_score(gts,  preds)
    class_accuracies = []
    for lab in labels: # TODO Fix
        class_accuracies.append(metrics.accuracy_score(gts[gts == lab], preds[gts == lab]))
    class_accuracies = np.array(class_accuracies)

    f1_micro        = metrics.f1_score(gts,        preds, average='micro')
    precision_micro = metrics.precision_score(gts, preds, average='micro')
    recall_micro    = metrics.recall_score(gts,    preds, average='micro')
    f1_macro        = metrics.f1_score(gts,        preds, average='macro')
    precision_macro = metrics.precision_score(gts, preds, average='macro')
    recall_macro    = metrics.recall_score(gts,    preds, average='macro')

    # class wise score
    f1s        = metrics.f1_score(gts,        preds, average=None)
    precisions = metrics.precision_score(gts, preds, average=None)
    recalls    = metrics.recall_score(gts,    preds, average=None)

    confusion = metrics.confusion_matrix(gts,preds, labels=labels)

    #TODO confusion matrix, recall, precision
    return accuracy, f1_micro, precision_micro, recall_micro, f1_macro, precision_macro, recall_macro, confusion, class_accuracies, f1s, precisions, recalls 
開發者ID:ozan-oktay,項目名稱:Attention-Gated-Networks,代碼行數:25,代碼來源:utils.py

示例2: multi_class_classification

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import precision_score [as 別名]
def multi_class_classification(data_X,data_Y):
    '''
    calculate multi-class classification and return related evaluation metrics
    '''

    svc = svm.SVC(C=1, kernel='linear')
    # X_train, X_test, y_train, y_test = train_test_split( data_X, data_Y, test_size=0.4, random_state=0) 
    clf = svc.fit(data_X, data_Y) #svm
    # array = svc.coef_
    # print array
    predicted = cross_val_predict(clf, data_X, data_Y, cv=2)
    print "accuracy",metrics.accuracy_score(data_Y, predicted)
    print "f1 score macro",metrics.f1_score(data_Y, predicted, average='macro') 
    print "f1 score micro",metrics.f1_score(data_Y, predicted, average='micro') 
    print "precision score",metrics.precision_score(data_Y, predicted, average='macro') 
    print "recall score",metrics.recall_score(data_Y, predicted, average='macro') 
    print "hamming_loss",metrics.hamming_loss(data_Y, predicted)
    print "classification_report", metrics.classification_report(data_Y, predicted)
    print "jaccard_similarity_score", metrics.jaccard_similarity_score(data_Y, predicted)
    # print "log_loss", metrics.log_loss(data_Y, predicted)
    print "zero_one_loss", metrics.zero_one_loss(data_Y, predicted)
    # print "AUC&ROC",metrics.roc_auc_score(data_Y, predicted)
    # print "matthews_corrcoef", metrics.matthews_corrcoef(data_Y, predicted) 
開發者ID:RoyZhengGao,項目名稱:edge2vec,代碼行數:25,代碼來源:multi_class_classification.py

示例3: evaluation_analysis

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import precision_score [as 別名]
def evaluation_analysis(true_label,predicted): 
    '''
    return all metrics results
    '''
    print "accuracy",metrics.accuracy_score(true_label, predicted)
    print "f1 score macro",metrics.f1_score(true_label, predicted, average='macro')     
    print "f1 score micro",metrics.f1_score(true_label, predicted, average='micro') 
    print "precision score",metrics.precision_score(true_label, predicted, average='macro') 
    print "recall score",metrics.recall_score(true_label, predicted, average='macro') 
    print "hamming_loss",metrics.hamming_loss(true_label, predicted)
    print "classification_report", metrics.classification_report(true_label, predicted)
    print "jaccard_similarity_score", metrics.jaccard_similarity_score(true_label, predicted)
    print "log_loss", metrics.log_loss(true_label, predicted)
    print "zero_one_loss", metrics.zero_one_loss(true_label, predicted)
    print "AUC&ROC",metrics.roc_auc_score(true_label, predicted)
    print "matthews_corrcoef", metrics.matthews_corrcoef(true_label, predicted) 
開發者ID:RoyZhengGao,項目名稱:edge2vec,代碼行數:18,代碼來源:link_prediction.py

示例4: get_all_metrics

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import precision_score [as 別名]
def get_all_metrics(model, eval_data, eval_labels, pred_labels):
    fpr, tpr, thresholds_keras = roc_curve(eval_labels, pred_labels)
    auc_ = auc(fpr, tpr)
    print("auc_keras:" + str(auc_))

    score = model.evaluate(eval_data, eval_labels, verbose=0)
    print("Test accuracy: " + str(score[1]))

    precision = precision_score(eval_labels, pred_labels)
    print('Precision score: {0:0.2f}'.format(precision))

    recall = recall_score(eval_labels, pred_labels)
    print('Recall score: {0:0.2f}'.format(recall))

    f1 = f1_score(eval_labels, pred_labels)
    print('F1 score: {0:0.2f}'.format(f1))

    average_precision = average_precision_score(eval_labels, pred_labels)
    print('Average precision-recall score: {0:0.2f}'.format(average_precision))

    return auc_, score[1], precision, recall, f1, average_precision, fpr, tpr 
開發者ID:tushartushar,項目名稱:DeepLearningSmells,代碼行數:23,代碼來源:metrics_util.py

示例5: get_all_metrics_

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import precision_score [as 別名]
def get_all_metrics_(eval_labels, pred_labels):
    fpr, tpr, thresholds_keras = roc_curve(eval_labels, pred_labels)
    auc_ = auc(fpr, tpr)
    print("auc_keras:" + str(auc_))

    precision = precision_score(eval_labels, pred_labels)
    print('Precision score: {0:0.2f}'.format(precision))

    recall = recall_score(eval_labels, pred_labels)
    print('Recall score: {0:0.2f}'.format(recall))

    f1 = f1_score(eval_labels, pred_labels)
    print('F1 score: {0:0.2f}'.format(f1))

    average_precision = average_precision_score(eval_labels, pred_labels)
    print('Average precision-recall score: {0:0.2f}'.format(average_precision))

    return auc_, precision, recall, f1, average_precision, fpr, tpr 
開發者ID:tushartushar,項目名稱:DeepLearningSmells,代碼行數:20,代碼來源:metrics_util.py

示例6: run_evaluate

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import precision_score [as 別名]
def run_evaluate(self, test):
        """Evaluates performance on test set

        Args:
            test: dataset that yields tuple of (sentences, relation tags)

        Returns:
            metrics: (dict) metrics["acc"] = 98.4, ...

        """
        y_true, y_pred = [], []
        for data in minibatches(test, self.config.batch_size):
            word_batch, pos1_batch, pos2_batch, pos_batch, y_batch = data
            relations_pred = self.predict_batch(word_batch, pos1_batch, pos2_batch, pos_batch)
            assert len(relations_pred) == len(y_batch)
            y_true += y_batch
            y_pred += relations_pred.tolist()

        acc = accuracy_score(y_true, y_pred)
        p   = precision_score(y_true, y_pred, average='macro')
        r   = recall_score(y_true, y_pred, average='macro')
        f1  = f1_score(y_true, y_pred, average='macro')

        return {"acc":acc, "p":p, "r":r, "f1":f1} 
開發者ID:pencoa,項目名稱:PCNN,代碼行數:26,代碼來源:pcnn_model.py

示例7: evaluate

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import precision_score [as 別名]
def evaluate(trueValues, predicted, decimals, note):
	print note
	label = 1
	avg = 'weighted'
	a = accuracy_score(trueValues, predicted)
	p = precision_score(trueValues, predicted, pos_label=label, average=avg)
	r = recall_score(trueValues, predicted, pos_label=label, average=avg)
	avg_f1 = f1_score(trueValues, predicted, pos_label=label, average=avg)
	fclasses = f1_score(trueValues, predicted, average=None)
	f1c1 = fclasses[0]; f1c2 = fclasses[1]
	fw = (f1c1 + f1c2)/2.0

	print 'accuracy:\t', str(round(a,decimals))
	print 'precision:\t', str(round(p,decimals))
	print 'recall:\t', str(round(r,decimals))
	print 'avg f1:\t', str(round(avg_f1,decimals))
	print 'c1 f1:\t', str(round(f1c1,decimals))
	print 'c2 f1:\t', str(round(f1c2,decimals))
	print 'avg(c1,c2):\t', str(round(fw,decimals))
	print '------------'

###################################################################################


# split a parallel or comparable corpus into two parts 
開發者ID:motazsaad,項目名稱:comparable-text-miner,代碼行數:27,代碼來源:textpro.py

示例8: accuracy

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import precision_score [as 別名]
def accuracy(y_true, y_pred):        
    # 計算混淆矩陣
    y = np.zeros(len(y_true))
    y_ = np.zeros(len(y_true))    
    for i in range(len(y_true)): 
        y[i] = np.argmax(y_true[i,:])
        y_[i] = np.argmax(y_pred[i,:])
    cnf_mat = confusion_matrix(y, y_)
    
    # Acc = 1.0*(cnf_mat[1][1]+cnf_mat[0][0])/len(y_true)
    # Sens = 1.0*cnf_mat[1][1]/(cnf_mat[1][1]+cnf_mat[1][0])
    # Spec = 1.0*cnf_mat[0][0]/(cnf_mat[0][0]+cnf_mat[0][1])
    
    # # 繪製ROC曲線
    # fpr, tpr, thresholds = roc_curve(y_true[:,0], y_pred[:,0])
    # Auc = auc(fpr, tpr)
    
    
    # 計算多分類評價值
    Sens = recall_score(y, y_, average='macro')
    Prec = precision_score(y, y_, average='macro')
    F1 = f1_score(y, y_, average='weighted') 
    Support = precision_recall_fscore_support(y, y_, beta=0.5, average=None)
    return Sens, Prec, F1, cnf_mat 
開發者ID:xyj77,項目名稱:MCF-3D-CNN,代碼行數:26,代碼來源:conv_featuremaps_visualization.py

示例9: calculate_scores

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import precision_score [as 別名]
def calculate_scores(y_predicted, y_true):
    """
    Function to calculate different performance scores
    """
    accuracy = accuracy_score(y_pred=y_predicted, y_true=y_true)
    precision = precision_score(y_pred=y_predicted, y_true=y_true)
    average_precision_score1 = average_precision_score(y_score=y_predicted, y_true=y_true)
    f1_score1 = f1_score(y_pred=y_predicted, y_true=y_true)

    print("Accuracy score:", accuracy)
    print("Precision score:", precision)
    print("Average Precision score:", average_precision_score1)
    print("F1 score:", f1_score1)
    print("Outlier detection and/or treatment completed.")

    return {"accuracy": accuracy,
            "precision": precision,
            "average_precision_score": average_precision_score1,
            "f1_score": f1_score1,
            } 
開發者ID:MateLabs,項目名稱:AutoOut,代碼行數:22,代碼來源:main.py

示例10: test_zero_precision_recall

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import precision_score [as 別名]
def test_zero_precision_recall():
    # Check that pathological cases do not bring NaNs

    old_error_settings = np.seterr(all='raise')

    try:
        y_true = np.array([0, 1, 2, 0, 1, 2])
        y_pred = np.array([2, 0, 1, 1, 2, 0])

        assert_almost_equal(precision_score(y_true, y_pred,
                                            average='macro'), 0.0, 2)
        assert_almost_equal(recall_score(y_true, y_pred, average='macro'),
                            0.0, 2)
        assert_almost_equal(f1_score(y_true, y_pred, average='macro'),
                            0.0, 2)

    finally:
        np.seterr(**old_error_settings) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:20,代碼來源:test_classification.py

示例11: test_precision_warnings

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import precision_score [as 別名]
def test_precision_warnings():
    clean_warning_registry()
    with warnings.catch_warnings(record=True) as record:
        warnings.simplefilter('always')
        precision_score(np.array([[1, 1], [1, 1]]),
                        np.array([[0, 0], [0, 0]]),
                        average='micro')
        assert_equal(str(record.pop().message),
                     'Precision is ill-defined and '
                     'being set to 0.0 due to no predicted samples.')
        precision_score([0, 0], [0, 0])
        assert_equal(str(record.pop().message),
                     'Precision is ill-defined and '
                     'being set to 0.0 due to no predicted samples.')

    assert_no_warnings(precision_score,
                       np.array([[0, 0], [0, 0]]),
                       np.array([[1, 1], [1, 1]]),
                       average='micro') 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:21,代碼來源:test_classification.py

示例12: test_ovr_multilabel_dataset

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import precision_score [as 別名]
def test_ovr_multilabel_dataset():
    base_clf = MultinomialNB(alpha=1)
    for au, prec, recall in zip((True, False), (0.51, 0.66), (0.51, 0.80)):
        X, Y = datasets.make_multilabel_classification(n_samples=100,
                                                       n_features=20,
                                                       n_classes=5,
                                                       n_labels=2,
                                                       length=50,
                                                       allow_unlabeled=au,
                                                       random_state=0)
        X_train, Y_train = X[:80], Y[:80]
        X_test, Y_test = X[80:], Y[80:]
        clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train)
        Y_pred = clf.predict(X_test)

        assert clf.multilabel_
        assert_almost_equal(precision_score(Y_test, Y_pred, average="micro"),
                            prec,
                            decimal=2)
        assert_almost_equal(recall_score(Y_test, Y_pred, average="micro"),
                            recall,
                            decimal=2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:24,代碼來源:test_multiclass.py

示例13: get_score

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import precision_score [as 別名]
def get_score(self, model, texta, textb, labels, score_type='f1'):
        metrics_map = {
            'f1': f1_score,
            'p': precision_score,
            'r': recall_score,
            'acc': accuracy_score
        }
        metric_func = metrics_map[score_type] if score_type in metrics_map else metrics_map['f1']
        assert texta.size(1) == textb.size(1) == len(labels)
        vec_predict = model(texta, textb)
        soft_predict = torch.softmax(vec_predict, dim=1)
        predict_prob, predict_index = torch.max(soft_predict.cpu().data, dim=1)
        # print('prob', predict_prob)
        # print('index', predict_index)
        # print('labels', labels)
        labels = labels.view(-1).cpu().data.numpy()
        return metric_func(predict_index, labels, average='micro') 
開發者ID:smilelight,項目名稱:lightNLP,代碼行數:19,代碼來源:tool.py

示例14: get_score

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import precision_score [as 別名]
def get_score(self, model, texta, textb, labels, score_type='f1'):
        metrics_map = {
            'f1': f1_score,
            'p': precision_score,
            'r': recall_score,
            'acc': accuracy_score
        }
        metric_func = metrics_map[score_type] if score_type in metrics_map else metrics_map['f1']
        assert texta.size(1) == textb.size(1) == len(labels)
        predict_prob = model(texta, textb)
        # print('predict', predict_prob)
        # print('labels', labels)
        predict_labels = torch.gt(predict_prob, 0.5)
        predict_labels = predict_labels.view(-1).cpu().data.numpy()
        labels = labels.view(-1).cpu().data.numpy()
        return metric_func(predict_labels, labels, average='micro') 
開發者ID:smilelight,項目名稱:lightNLP,代碼行數:18,代碼來源:tool.py

示例15: get_score

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import precision_score [as 別名]
def get_score(self, model, x, y, pos, rel, field_x, field_y, field_pos, score_type='f1'):
        metrics_map = {
            'f1': f1_score,
            'p': precision_score,
            'r': recall_score,
            'acc': accuracy_score
        }
        metric_func = metrics_map[score_type] if score_type in metrics_map else metrics_map['f1']
        vec_x = torch.tensor([field_x.stoi[i] for i in x])
        len_vec_x = torch.tensor([len(vec_x)]).to(DEVICE)
        vec_pos = torch.tensor([field_pos.stoi[i] for i in pos])
        vec_rel = torch.tensor([int(x) for x in rel])
        predict_y = model(vec_x.view(-1, 1).to(DEVICE), vec_pos.view(-1, 1).to(DEVICE), vec_rel.view(-1, 1).to(DEVICE),
                          len_vec_x)[0]
        true_y = [field_y.stoi[i] for i in y]
        assert len(true_y) == len(predict_y)
        return metric_func(predict_y, true_y, average='micro') 
開發者ID:smilelight,項目名稱:lightNLP,代碼行數:19,代碼來源:tool.py


注:本文中的sklearn.metrics.precision_score方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。