當前位置: 首頁>>代碼示例>>Python>>正文


Python pairwise.rbf_kernel方法代碼示例

本文整理匯總了Python中sklearn.metrics.pairwise.rbf_kernel方法的典型用法代碼示例。如果您正苦於以下問題:Python pairwise.rbf_kernel方法的具體用法?Python pairwise.rbf_kernel怎麽用?Python pairwise.rbf_kernel使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.metrics.pairwise的用法示例。


在下文中一共展示了pairwise.rbf_kernel方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __kernel_definition__

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import rbf_kernel [as 別名]
def __kernel_definition__(self):
        """Select the kernel function
        
        Returns
        -------
        kernel : a callable relative to selected kernel
        """
        if hasattr(self.kernel, '__call__'):
            return self.kernel
        if self.kernel == 'rbf' or self.kernel == None:
            return lambda X,Y : rbf_kernel(X,Y,self.rbf_gamma)
        if self.kernel == 'poly':
            return lambda X,Y : polynomial_kernel(X, Y, degree=self.degree, gamma=self.rbf_gamma, coef0=self.coef0)
        if self.kernel == 'linear':
            return lambda X,Y : linear_kernel(X,Y)
        if self.kernel == 'precomputed':
            return lambda X,Y : X 
開發者ID:IvanoLauriola,項目名稱:MKLpy,代碼行數:19,代碼來源:komd.py

示例2: test_fastfood

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import rbf_kernel [as 別名]
def test_fastfood():
    """test that Fastfood fast approximates kernel on random data"""
    # compute exact kernel
    gamma = 10.0
    kernel = rbf_kernel(X, Y, gamma=gamma)

    sigma = np.sqrt(1 / (2 * gamma))

    # approximate kernel mapping
    ff_transform = Fastfood(sigma, n_components=1000, random_state=42)

    pars = ff_transform.fit(X)
    X_trans = pars.transform(X)
    Y_trans = ff_transform.transform(Y)

    kernel_approx = np.dot(X_trans, Y_trans.T)

    print("approximation:", kernel_approx[:5, :5])
    print("true kernel:", kernel[:5, :5])
    assert_array_almost_equal(kernel, kernel_approx, decimal=1) 
開發者ID:scikit-learn-contrib,項目名稱:scikit-learn-extra,代碼行數:22,代碼來源:test_fastfood.py

示例3: _build_kernel

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import rbf_kernel [as 別名]
def _build_kernel(x, kernel, gamma=None):

    if kernel in {'pearson', 'spearman'}:
        if kernel == 'spearman':
            x = np.apply_along_axis(rankdata, 1, x)
        return np.corrcoef(x)

    if kernel in {'cosine', 'normalized_angle'}:
        x = 1 - squareform(pdist(x, metric='cosine'))
        if kernel == 'normalized_angle':
            x = 1 - np.arccos(x, x)/np.pi
        return x

    if kernel == 'gaussian':
        if gamma is None:
            gamma = 1 / x.shape[1]
        return rbf_kernel(x, gamma=gamma)

    if callable(kernel):
        return kernel(x)

    raise ValueError("Unknown kernel '{0}'.".format(kernel)) 
開發者ID:MICA-MNI,項目名稱:BrainSpace,代碼行數:24,代碼來源:kernels.py

示例4: test_pairwise_kernels_callable

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import rbf_kernel [as 別名]
def test_pairwise_kernels_callable():
    # Test the pairwise_kernels helper function
    # with a callable function, with given keywords.
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((2, 4))

    metric = callable_rbf_kernel
    kwds = {'gamma': 0.1}
    K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds)
    K2 = rbf_kernel(X, Y=Y, **kwds)
    assert_array_almost_equal(K1, K2)

    # callable function, X=Y
    K1 = pairwise_kernels(X, Y=X, metric=metric, **kwds)
    K2 = rbf_kernel(X, Y=X, **kwds)
    assert_array_almost_equal(K1, K2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:19,代碼來源:test_pairwise.py

示例5: test_spectral_embedding_unnormalized

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import rbf_kernel [as 別名]
def test_spectral_embedding_unnormalized():
    # Test that spectral_embedding is also processing unnormalized laplacian
    # correctly
    random_state = np.random.RandomState(36)
    data = random_state.randn(10, 30)
    sims = rbf_kernel(data)
    n_components = 8
    embedding_1 = spectral_embedding(sims,
                                     norm_laplacian=False,
                                     n_components=n_components,
                                     drop_first=False)

    # Verify using manual computation with dense eigh
    laplacian, dd = csgraph.laplacian(sims, normed=False,
                                      return_diag=True)
    _, diffusion_map = eigh(laplacian)
    embedding_2 = diffusion_map.T[:n_components]
    embedding_2 = _deterministic_vector_sign_flip(embedding_2).T

    assert_array_almost_equal(embedding_1, embedding_2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:22,代碼來源:test_spectral_embedding.py

示例6: test_spectral_embedding_first_eigen_vector

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import rbf_kernel [as 別名]
def test_spectral_embedding_first_eigen_vector():
    # Test that the first eigenvector of spectral_embedding
    # is constant and that the second is not (for a connected graph)
    random_state = np.random.RandomState(36)
    data = random_state.randn(10, 30)
    sims = rbf_kernel(data)
    n_components = 2

    for seed in range(10):
        embedding = spectral_embedding(sims,
                                       norm_laplacian=False,
                                       n_components=n_components,
                                       drop_first=False,
                                       random_state=seed)

        assert np.std(embedding[:, 0]) == pytest.approx(0)
        assert np.std(embedding[:, 1]) > 1e-3 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:19,代碼來源:test_spectral_embedding.py

示例7: test_svr_predict

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import rbf_kernel [as 別名]
def test_svr_predict():
    # Test SVR's decision_function
    # Sanity check, test that predict implemented in python
    # returns the same as the one in libsvm

    X = iris.data
    y = iris.target

    # linear kernel
    reg = svm.SVR(kernel='linear', C=0.1).fit(X, y)

    dec = np.dot(X, reg.coef_.T) + reg.intercept_
    assert_array_almost_equal(dec.ravel(), reg.predict(X).ravel())

    # rbf kernel
    reg = svm.SVR(kernel='rbf', gamma=1).fit(X, y)

    rbfs = rbf_kernel(X, reg.support_vectors_, gamma=reg.gamma)
    dec = np.dot(rbfs, reg.dual_coef_.T) + reg.intercept_
    assert_array_almost_equal(dec.ravel(), reg.predict(X).ravel()) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:22,代碼來源:test_svm.py

示例8: test_nystroem_default_parameters

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import rbf_kernel [as 別名]
def test_nystroem_default_parameters():
    rnd = np.random.RandomState(42)
    X = rnd.uniform(size=(10, 4))

    # rbf kernel should behave as gamma=None by default
    # aka gamma = 1 / n_features
    nystroem = Nystroem(n_components=10)
    X_transformed = nystroem.fit_transform(X)
    K = rbf_kernel(X, gamma=None)
    K2 = np.dot(X_transformed, X_transformed.T)
    assert_array_almost_equal(K, K2)

    # chi2 kernel should behave as gamma=1 by default
    nystroem = Nystroem(kernel='chi2', n_components=10)
    X_transformed = nystroem.fit_transform(X)
    K = chi2_kernel(X, gamma=1)
    K2 = np.dot(X_transformed, X_transformed.T)
    assert_array_almost_equal(K, K2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:20,代碼來源:test_kernel_approximation.py

示例9: test_gridsearch_pipeline_precomputed

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import rbf_kernel [as 別名]
def test_gridsearch_pipeline_precomputed():
    # Test if we can do a grid-search to find parameters to separate
    # circles with a perceptron model using a precomputed kernel.
    X, y = make_circles(n_samples=400, factor=.3, noise=.05,
                        random_state=0)
    kpca = KernelPCA(kernel="precomputed", n_components=2)
    pipeline = Pipeline([("kernel_pca", kpca),
                         ("Perceptron", Perceptron(max_iter=5))])
    param_grid = dict(Perceptron__max_iter=np.arange(1, 5))
    grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid)
    X_kernel = rbf_kernel(X, gamma=2.)
    grid_search.fit(X_kernel, y)
    assert_equal(grid_search.best_score_, 1)


# 0.23. warning about tol not having its correct default value. 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:18,代碼來源:test_kernel_pca.py

示例10: _fit

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import rbf_kernel [as 別名]
def _fit(self, X):
        self.estimator_  = OneClassSVM(
            cache_size   = self.cache_size,
            gamma        = self.gamma,
            max_iter     = self.max_iter,
            nu           = self.nu,
            shrinking    = self.shrinking,
            tol          = self.tol
        ).fit(X)

        l,               = self.support_.shape
        self.nu_l_       = self.nu * l

        Q                = rbf_kernel(
            self.support_vectors_, gamma=self.estimator_._gamma
        )
        c2               = (self.dual_coef_ @ Q @ self.dual_coef_.T)[0, 0]
        self.R2_         = c2 + 2. * self.intercept_[0] + 1.

        return self 
開發者ID:Y-oHr-N,項目名稱:kenchi,代碼行數:22,代碼來源:classification_based.py

示例11: GP

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import rbf_kernel [as 別名]
def GP(seq_length=30, num_samples=28*5*100, num_signals=1, scale=0.1, kernel='rbf', **kwargs):
    # the shape of the samples is num_samples x seq_length x num_signals
    samples = np.empty(shape=(num_samples, seq_length, num_signals))
    #T = np.arange(seq_length)/seq_length    # note, between 0 and 1
    T = np.arange(seq_length)    # note, not between 0 and 1
    if kernel == 'periodic':
        cov = periodic_kernel(T)
    elif kernel =='rbf':
        cov = rbf_kernel(T.reshape(-1, 1), gamma=scale)
    else:
        raise NotImplementedError
    # scale the covariance
    cov *= 0.2
    # define the distribution
    mu = np.zeros(seq_length)
    print(np.linalg.det(cov))
    distribution = multivariate_normal(mean=np.zeros(cov.shape[0]), cov=cov)
    pdf = distribution.logpdf
    # now generate samples
    for i in range(num_signals):
        samples[:, :, i] = distribution.rvs(size=num_samples)
    return samples, pdf 
開發者ID:ratschlab,項目名稱:RGAN,代碼行數:24,代碼來源:data_utils.py

示例12: gaussian

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import rbf_kernel [as 別名]
def gaussian(x, workers=None):
    """Default medial gaussian kernel similarity calculation"""
    l1 = pairwise_distances(X=x, metric="l1", n_jobs=workers)
    n = l1.shape[0]
    med = np.median(
        np.lib.stride_tricks.as_strided(
            l1, (n - 1, n + 1), (l1.itemsize * (n + 1), l1.itemsize)
        )[:, 1:]
    )
    # prevents division by zero when used on label vectors
    med = med if med else 1
    gamma = 1.0 / (2 * (med ** 2))
    return rbf_kernel(x, gamma=gamma)


# p-value computation 
開發者ID:neurodata,項目名稱:hyppo,代碼行數:18,代碼來源:_utils.py

示例13: test_affinity_mat_rbf

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import rbf_kernel [as 別名]
def test_affinity_mat_rbf(data):
        
    v1_data = data['fit_data'][0]
    spectral = data['spectral']

    distances = cdist(v1_data, v1_data)
    gamma = 1 / (2 * np.median(distances) ** 2)
    true_kernel = rbf_kernel(v1_data, gamma=gamma)
    g_kernel = spectral._affinity_mat(v1_data)

    assert(g_kernel.shape[0] == data['n_fit'])
    assert(g_kernel.shape[1] == data['n_fit'])

    for ind1 in range(g_kernel.shape[0]):
        for ind2 in range(g_kernel.shape[1]):
            assert np.abs(true_kernel[ind1][ind2]
                          - g_kernel[ind1][ind2]) < 0.000001 
開發者ID:neurodata,項目名稱:mvlearn,代碼行數:19,代碼來源:test_spectral.py

示例14: test_affinity_mat_rbf2

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import rbf_kernel [as 別名]
def test_affinity_mat_rbf2(data):

    v1_data = data['fit_data'][0]
    gamma = 1
    spectral = MultiviewSpectralClustering(random_state=RANDOM_STATE,
                                           gamma=gamma)
    distances = cdist(v1_data, v1_data)
    gamma = 1 / (2 * np.median(distances) ** 2)
    true_kernel = rbf_kernel(v1_data, gamma=1)
    g_kernel = spectral._affinity_mat(v1_data)

    assert(g_kernel.shape[0] == data['n_fit'])
    assert(g_kernel.shape[1] == data['n_fit'])

    for ind1 in range(g_kernel.shape[0]):
        for ind2 in range(g_kernel.shape[1]):
            assert np.abs(true_kernel[ind1][ind2]
                          - g_kernel[ind1][ind2]) < 0.000001 
開發者ID:neurodata,項目名稱:mvlearn,代碼行數:20,代碼來源:test_spectral.py

示例15: test_compute_eigs

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import rbf_kernel [as 別名]
def test_compute_eigs(data):

    v1_data = data['fit_data'][0]
    g_kernel = rbf_kernel(v1_data, v1_data)
    n_clusts = data['n_clusters']
    n_fit = data['n_fit']

    spectral = data['spectral']
    eigs = spectral._compute_eigs(g_kernel)

    assert(eigs.shape[0] == n_fit)
    assert(eigs.shape[1] == n_clusts)

    col_mags = np.linalg.norm(eigs, axis=0)

    for val in col_mags:
        assert(np.abs(val - 1) < 0.000001) 
開發者ID:neurodata,項目名稱:mvlearn,代碼行數:19,代碼來源:test_spectral.py


注:本文中的sklearn.metrics.pairwise.rbf_kernel方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。