當前位置: 首頁>>代碼示例>>Python>>正文


Python pairwise.pairwise_kernels方法代碼示例

本文整理匯總了Python中sklearn.metrics.pairwise.pairwise_kernels方法的典型用法代碼示例。如果您正苦於以下問題:Python pairwise.pairwise_kernels方法的具體用法?Python pairwise.pairwise_kernels怎麽用?Python pairwise.pairwise_kernels使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.metrics.pairwise的用法示例。


在下文中一共展示了pairwise.pairwise_kernels方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _intertext_score

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_kernels [as 別名]
def _intertext_score(full_text):
    '''returns tuple of scored sentences
       in order of appearance
       Note: Doing an A/B test to
       compare results, reverting to 
       original algorithm.'''

    sentences = sentence_tokenizer(full_text)
    norm = _normalize(sentences)
    similarity_matrix = pairwise_kernels(norm, metric='cosine')
    scores = _textrank(similarity_matrix)
    scored_sentences = []
    for i, s in enumerate(sentences):
        scored_sentences.append((scores[i],i,s))
    top_scorers = sorted(scored_sentences,
                         key=lambda tup: tup[0], 
                         reverse=True)
    return top_scorers 
開發者ID:lekhakpadmanabh,項目名稱:Summarizer,代碼行數:20,代碼來源:core.py

示例2: test_pairwise_kernels_callable

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_kernels [as 別名]
def test_pairwise_kernels_callable():
    # Test the pairwise_kernels helper function
    # with a callable function, with given keywords.
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((2, 4))

    metric = callable_rbf_kernel
    kwds = {'gamma': 0.1}
    K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds)
    K2 = rbf_kernel(X, Y=Y, **kwds)
    assert_array_almost_equal(K1, K2)

    # callable function, X=Y
    K1 = pairwise_kernels(X, Y=X, metric=metric, **kwds)
    K2 = rbf_kernel(X, Y=X, **kwds)
    assert_array_almost_equal(K1, K2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:19,代碼來源:test_pairwise.py

示例3: test_pairwise_similarity_sparse_output

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_kernels [as 別名]
def test_pairwise_similarity_sparse_output(metric, pairwise_func):
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((3, 4))
    Xcsr = csr_matrix(X)
    Ycsr = csr_matrix(Y)

    # should be sparse
    K1 = pairwise_func(Xcsr, Ycsr, dense_output=False)
    assert issparse(K1)

    # should be dense, and equal to K1
    K2 = pairwise_func(X, Y, dense_output=True)
    assert not issparse(K2)
    assert_array_almost_equal(K1.todense(), K2)

    # show the kernel output equal to the sparse.todense()
    K3 = pairwise_kernels(X, Y=Y, metric=metric)
    assert_array_almost_equal(K1.todense(), K3) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:21,代碼來源:test_pairwise.py

示例4: test_cosine_similarity

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_kernels [as 別名]
def test_cosine_similarity():
    # Test the cosine_similarity.

    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((3, 4))
    Xcsr = csr_matrix(X)
    Ycsr = csr_matrix(Y)

    for X_, Y_ in ((X, None), (X, Y),
                   (Xcsr, None), (Xcsr, Ycsr)):
        # Test that the cosine is kernel is equal to a linear kernel when data
        # has been previously normalized by L2-norm.
        K1 = pairwise_kernels(X_, Y=Y_, metric="cosine")
        X_ = normalize(X_)
        if Y_ is not None:
            Y_ = normalize(Y_)
        K2 = pairwise_kernels(X_, Y=Y_, metric="linear")
        assert_array_almost_equal(K1, K2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:21,代碼來源:test_pairwise.py

示例5: test_mmk

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_kernels [as 別名]
def test_mmk():
    bags = [np.random.normal(size=(np.random.randint(10, 100), 10))
            for _ in range(20)]

    res = MeanMapKernel(gamma=2.38).fit_transform(bags)
    for i in range(20):
        for j in range(20):
            exp = pairwise_kernels(bags[j], bags[i], metric='rbf', gamma=2.38)
            assert_almost_equal(res[i, j], exp.mean(),
                                err_msg="({} to {})".format(i, j))

    res = MeanMapKernel(kernel='linear').fit(bags[:5]).transform(bags[-2:])
    for i in range(5):
        for j in range(18, 20):
            exp = pairwise_kernels(bags[j], bags[i], metric='linear')
            assert_almost_equal(res[j - 18, i], exp.mean(),
                                err_msg="({} to {})".format(i, j))

    # fails on wrong dimension
    assert_raises(
        ValueError,
        lambda:MeanMapKernel().fit(bags).transform([np.random.randn(20, 8)]))


################################################################################ 
開發者ID:djsutherland,項目名稱:skl-groups,代碼行數:27,代碼來源:test_mmk.py

示例6: decision_function

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_kernels [as 別名]
def decision_function(self, X):
        """Decision function of the SVM.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            The input data.

        Returns
        -------
        y : array-like, shape (n_samples,)
            The values of decision function.
        """
        X = check_array(X)
        if self.kernel == "linear":
            return self.intercept_ + np.dot(X, self.coef_)
        else:
            K = pairwise_kernels(X, self.support_vectors_, metric=self.kernel,
                                 **self.kernel_args)
            return (self.intercept_ + np.sum(self.dual_coef_[np.newaxis, :] *
                                             self.y * K, axis=1)) 
開發者ID:AlexanderFabisch,項目名稱:svm,代碼行數:23,代碼來源:svm.py

示例7: get_pairwise_matrix

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_kernels [as 別名]
def get_pairwise_matrix(self, X, Y=None):
        """Calculates the pairwise similarity of atomic environments with
        scikit-learn, and the pairwise metric configured in the constructor.

        Args:
            X(np.ndarray): Feature vector for the atoms in structure A
            Y(np.ndarray): Feature vector for the atoms in structure B

        Returns:
            np.ndarray: NxM matrix of local similarities between structures A
                and B, with N and M atoms respectively.

        """
        if callable(self.metric):
            params = self.kernel_params or {}
        else:
            params = {"gamma": self.gamma,
                      "degree": self.degree,
                      "coef0": self.coef0}
        return pairwise_kernels(X, Y, metric=self.metric,
                                filter_params=True, **params) 
開發者ID:SINGROUP,項目名稱:dscribe,代碼行數:23,代碼來源:localsimilaritykernel.py

示例8: _title_similarity_score

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_kernels [as 別名]
def _title_similarity_score(full_text, title):
    """Similarity scores for sentences with
       title in descending order"""

    sentences = sentence_tokenizer(full_text)
    norm = _normalize([title]+sentences)
    similarity_matrix = pairwise_kernels(norm, metric='cosine')
    return sorted(zip(
                     similarity_matrix[0,1:],
                     range(len(similarity_matrix)),
                     sentences
                     ),
                 key = lambda tup: tup[0],
                 reverse=True
                 ) 
開發者ID:lekhakpadmanabh,項目名稱:Summarizer,代碼行數:17,代碼來源:core.py

示例9: test_pairwise_kernels

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_kernels [as 別名]
def test_pairwise_kernels(metric):
    # Test the pairwise_kernels helper function.

    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((2, 4))
    function = PAIRWISE_KERNEL_FUNCTIONS[metric]
    # Test with Y=None
    K1 = pairwise_kernels(X, metric=metric)
    K2 = function(X)
    assert_array_almost_equal(K1, K2)
    # Test with Y=Y
    K1 = pairwise_kernels(X, Y=Y, metric=metric)
    K2 = function(X, Y=Y)
    assert_array_almost_equal(K1, K2)
    # Test with tuples as X and Y
    X_tuples = tuple([tuple([v for v in row]) for row in X])
    Y_tuples = tuple([tuple([v for v in row]) for row in Y])
    K2 = pairwise_kernels(X_tuples, Y_tuples, metric=metric)
    assert_array_almost_equal(K1, K2)

    # Test with sparse X and Y
    X_sparse = csr_matrix(X)
    Y_sparse = csr_matrix(Y)
    if metric in ["chi2", "additive_chi2"]:
        # these don't support sparse matrices yet
        assert_raises(ValueError, pairwise_kernels,
                      X_sparse, Y=Y_sparse, metric=metric)
        return
    K1 = pairwise_kernels(X_sparse, Y=Y_sparse, metric=metric)
    assert_array_almost_equal(K1, K2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:33,代碼來源:test_pairwise.py

示例10: test_pairwise_kernels_filter_param

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_kernels [as 別名]
def test_pairwise_kernels_filter_param():
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((2, 4))
    K = rbf_kernel(X, Y, gamma=0.1)
    params = {"gamma": 0.1, "blabla": ":)"}
    K2 = pairwise_kernels(X, Y, metric="rbf", filter_params=True, **params)
    assert_array_almost_equal(K, K2)

    assert_raises(TypeError, pairwise_kernels, X, Y, "rbf", **params) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:12,代碼來源:test_pairwise.py

示例11: _get_kernel

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_kernels [as 別名]
def _get_kernel(self, X, Y=None):
        kernel_params = self._get_kernel_params()
        if self.kernel == "gak":
            return cdist_gak(X, Y, n_jobs=self.n_jobs, verbose=self.verbose,
                             **kernel_params)
        else:
            X_sklearn = to_sklearn_dataset(X)
            if Y is not None:
                Y_sklearn = to_sklearn_dataset(Y)
            else:
                Y_sklearn = Y
            return pairwise_kernels(X_sklearn, Y_sklearn, metric=self.kernel,
                                    n_jobs=self.n_jobs, **kernel_params) 
開發者ID:tslearn-team,項目名稱:tslearn,代碼行數:15,代碼來源:clustering.py

示例12: transform

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_kernels [as 別名]
def transform(self, X):
        '''
        Compute kernels from X to :attr:`features_`.

        Parameters
        ----------
        X : list of arrays or :class:`skl_groups.features.Features`
            The bags to compute "from". Must have same dimension as
            :attr:`features_`.

        Returns
        -------
        K : array of shape ``[len(X), len(features_)]``
            The kernel evaluations from X to :attr:`features_`.
        '''

        X = as_features(X, stack=True, bare=True)
        Y = self.features_

        if X.dim != Y.dim:
            raise ValueError("MMK transform got dimension {} but had {} at fit"
                             .format(X.dim, Y.dim))

        pointwise = pairwise_kernels(X.stacked_features, Y.stacked_features,
                                     metric=self.kernel,
                                     filter_params=True,
                                     **self._get_kernel_params())

        # TODO: is there a way to do this without a Python loop?
        K = np.empty((len(X), len(Y)))
        for i in range(len(X)):
            for j in range(len(Y)):
                K[i, j] = pointwise[X._boundaries[i]:X._boundaries[i+1],
                                    Y._boundaries[j]:Y._boundaries[j+1]].mean()

        return K 
開發者ID:djsutherland,項目名稱:skl-groups,代碼行數:38,代碼來源:mmk.py

示例13: _get_kernel

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_kernels [as 別名]
def _get_kernel(self, X, Y=None):
        if callable(self.kernel_):
            params = self.kernel_params_ or {}
        else:
            params = {'gamma': self.gamma_,
                      'degree': self.degree_,
                      'coef0': self.coef0_}

        return pairwise_kernels(X, Y, metric=self.kernel_, filter_params=True, **params) 
開發者ID:jlsuarezdiaz,項目名稱:pyDML,代碼行數:11,代碼來源:dml_algorithm.py

示例14: test_pairwise_precomputed

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_kernels [as 別名]
def test_pairwise_precomputed():
    for func in [pairwise_distances, pairwise_kernels]:
        # Test correct shape
        assert_raises_regexp(ValueError, '.* shape .*',
                             func, np.zeros((5, 3)), metric='precomputed')
        # with two args
        assert_raises_regexp(ValueError, '.* shape .*',
                             func, np.zeros((5, 3)), np.zeros((4, 4)),
                             metric='precomputed')
        # even if shape[1] agrees (although thus second arg is spurious)
        assert_raises_regexp(ValueError, '.* shape .*',
                             func, np.zeros((5, 3)), np.zeros((4, 3)),
                             metric='precomputed')

        # Test not copied (if appropriate dtype)
        S = np.zeros((5, 5))
        S2 = func(S, metric="precomputed")
        assert_true(S is S2)
        # with two args
        S = np.zeros((5, 3))
        S2 = func(S, np.zeros((3, 3)), metric="precomputed")
        assert_true(S is S2)

        # Test always returns float dtype
        S = func(np.array([[1]], dtype='int'), metric='precomputed')
        assert_equal('f', S.dtype.kind)

        # Test converts list to array-like
        S = func([[1.]], metric='precomputed')
        assert_true(isinstance(S, np.ndarray)) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:32,代碼來源:test_pairwise.py

示例15: test_pairwise_parallel

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_kernels [as 別名]
def test_pairwise_parallel():
    wminkowski_kwds = {'w': np.arange(1, 5).astype('double'), 'p': 1}
    metrics = [(pairwise_distances, 'euclidean', {}),
               (pairwise_distances, wminkowski, wminkowski_kwds),
               (pairwise_distances, 'wminkowski', wminkowski_kwds),
               (pairwise_kernels, 'polynomial', {'degree': 1}),
               (pairwise_kernels, callable_rbf_kernel, {'gamma': .1}),
               ]
    for func, metric, kwds in metrics:
        yield check_pairwise_parallel, func, metric, kwds 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:12,代碼來源:test_pairwise.py


注:本文中的sklearn.metrics.pairwise.pairwise_kernels方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。