當前位置: 首頁>>代碼示例>>Python>>正文


Python pairwise.pairwise_distances方法代碼示例

本文整理匯總了Python中sklearn.metrics.pairwise.pairwise_distances方法的典型用法代碼示例。如果您正苦於以下問題:Python pairwise.pairwise_distances方法的具體用法?Python pairwise.pairwise_distances怎麽用?Python pairwise.pairwise_distances使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.metrics.pairwise的用法示例。


在下文中一共展示了pairwise.pairwise_distances方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_paired_distances

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_distances [as 別名]
def test_paired_distances(metric, func):
    # Test the pairwise_distance helper function.
    rng = np.random.RandomState(0)
    # Euclidean distance should be equivalent to calling the function.
    X = rng.random_sample((5, 4))
    # Euclidean distance, with Y != X.
    Y = rng.random_sample((5, 4))

    S = paired_distances(X, Y, metric=metric)
    S2 = func(X, Y)
    assert_array_almost_equal(S, S2)
    S3 = func(csr_matrix(X), csr_matrix(Y))
    assert_array_almost_equal(S, S3)
    if metric in PAIRWISE_DISTANCE_FUNCTIONS:
        # Check the pairwise_distances implementation
        # gives the same value
        distances = PAIRWISE_DISTANCE_FUNCTIONS[metric](X, Y)
        distances = np.diag(distances)
        assert_array_almost_equal(distances, S) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:21,代碼來源:test_pairwise.py

示例2: test_trustworthiness_precomputed_deprecation

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_distances [as 別名]
def test_trustworthiness_precomputed_deprecation():
    # FIXME: Remove this test in v0.23

    # Use of the flag `precomputed` in trustworthiness parameters has been
    # deprecated, but will still work until v0.23.
    random_state = check_random_state(0)
    X = random_state.randn(100, 2)
    assert_equal(assert_warns(DeprecationWarning, trustworthiness,
                              pairwise_distances(X), X, precomputed=True), 1.)
    assert_equal(assert_warns(DeprecationWarning, trustworthiness,
                              pairwise_distances(X), X, metric='precomputed',
                              precomputed=True), 1.)
    assert_raises(ValueError, assert_warns, DeprecationWarning,
                  trustworthiness, X, X, metric='euclidean', precomputed=True)
    assert_equal(assert_warns(DeprecationWarning, trustworthiness,
                              pairwise_distances(X), X, metric='euclidean',
                              precomputed=True), 1.) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:19,代碼來源:test_t_sne.py

示例3: _run_answer_test

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_distances [as 別名]
def _run_answer_test(pos_input, pos_output, neighbors, grad_output,
                     verbose=False, perplexity=0.1, skip_num_points=0):
    distances = pairwise_distances(pos_input).astype(np.float32)
    args = distances, perplexity, verbose
    pos_output = pos_output.astype(np.float32)
    neighbors = neighbors.astype(np.int64, copy=False)
    pij_input = _joint_probabilities(*args)
    pij_input = squareform(pij_input).astype(np.float32)
    grad_bh = np.zeros(pos_output.shape, dtype=np.float32)

    from scipy.sparse import csr_matrix
    P = csr_matrix(pij_input)

    neighbors = P.indices.astype(np.int64)
    indptr = P.indptr.astype(np.int64)

    _barnes_hut_tsne.gradient(P.data, pos_output, neighbors, indptr,
                              grad_bh, 0.5, 2, 1, skip_num_points=0)
    assert_array_almost_equal(grad_bh, grad_output, decimal=4) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:21,代碼來源:test_t_sne.py

示例4: construct_M

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_distances [as 別名]
def construct_M(X, k, gamma):
    """
    This function constructs the M matrix described in the paper
    """
    n_sample, n_feature = X.shape
    Xt = X.T
    D = pairwise_distances(X)
    # sort the distance matrix D in ascending order
    idx = np.argsort(D, axis=1)
    # choose the k-nearest neighbors for each instance
    idx_new = idx[:, 0:k+1]
    H = np.eye(k+1) - 1/(k+1) * np.ones((k+1, k+1))
    I = np.eye(k+1)
    Mi = np.zeros((n_sample, n_sample))
    for i in range(n_sample):
        Xi = Xt[:, idx_new[i, :]]
        Xi_tilde =np.dot(Xi, H)
        Bi = np.linalg.inv(np.dot(Xi_tilde.T, Xi_tilde) + gamma*I)
        Si = np.zeros((n_sample, k+1))
        for q in range(k+1):
            Si[idx_new[q], q] = 1
        Mi = Mi + np.dot(np.dot(Si, np.dot(np.dot(H, Bi), H)), Si.T)
    M = np.dot(np.dot(X.T, Mi), X)
    return M 
開發者ID:jundongl,項目名稱:scikit-feature,代碼行數:26,代碼來源:UDFS.py

示例5: information_density

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_distances [as 別名]
def information_density(X: modALinput, metric: Union[str, Callable] = 'euclidean') -> np.ndarray:
    """
    Calculates the information density metric of the given data using the given metric.

    Args:
        X: The data for which the information density is to be calculated.
        metric: The metric to be used. Should take two 1d numpy.ndarrays for argument.

    Todo:
        Should work with all possible modALinput.
        Perhaps refactor the module to use some stuff from sklearn.metrics.pairwise

    Returns:
        The information density for each sample.
    """
    # inf_density = np.zeros(shape=(X.shape[0],))
    # for X_idx, X_inst in enumerate(X):
    #     inf_density[X_idx] = sum(similarity_measure(X_inst, X_j) for X_j in X)
    #
    # return inf_density/X.shape[0]

    similarity_mtx = 1/(1+pairwise_distances(X, X, metric=metric))

    return similarity_mtx.mean(axis=1) 
開發者ID:modAL-python,項目名稱:modAL,代碼行數:26,代碼來源:density.py

示例6: _eval_retrieval

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_distances [as 別名]
def _eval_retrieval(PX, PY, GX, GY):

    # D_{i, j} is the distance between the ith array from PX and the jth array from GX.
    D = pairwise_distances(PX, GX, metric=args.method, n_jobs=-2)
    Rank = np.argsort(D, axis=1)

    # Evaluation
    recall_1 = recall_at_k(Rank, PY, GY, k=1)  # Recall @ K
    print "{:8}{:8.2%}".format('Recall@1', recall_1)

    recall_5 = recall_at_k(Rank, PY, GY, k=5)  # Recall @ K
    print "{:8}{:8.2%}".format('Recall@5', recall_5)

    recall_10 = recall_at_k(Rank, PY, GY, k=10)  # Recall @ K
    print "{:8}{:8.2%}".format('Recall@10', recall_10)

    map_value = mean_average_precision(Rank, PY, GY)  # Mean Average Precision
    print "{:8}{:8.2%}".format('MAP', map_value)

    return recall_1, recall_5, recall_10, map_value 
開發者ID:YingZhangDUT,項目名稱:Cross-Modal-Projection-Learning,代碼行數:22,代碼來源:bidirectional_eval.py

示例7: predict

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_distances [as 別名]
def predict(self, X):
		"""
		Classify the input data assigning the label of the nearest prototype

		Keyword arguments:
		X -- The feature vectors
		"""
		classification=np.zeros(len(X))

		if self.distance_metric=="euclidean":
			distances=pairwise_distances(X, self.M_,self.distance_metric)									#compute distances to the prototypes (template matching)
		if self.distance_metric=="minkowski":
			distances=pairwise_distances(X, self.M_,self.distance_metric)	
		elif self.distance_metric=="manhattan":
			distances=pairwise_distances(X, self.M_,self.distance_metric)
		elif self.distance_metric=="mahalanobis":
			distances=pairwise_distances(X, self.M_,self.distance_metric)
		else:
			distances=pairwise_distances(X, self.M_,"euclidean")

		for i in xrange(len(X)):
			classification[i]=self.outcomes[distances[i].tolist().index(min(distances[i]))]					#choose the class belonging to nearest prototype distance

		return classification 
開發者ID:alexpnt,項目名稱:default-credit-card-prediction,代碼行數:26,代碼來源:classification.py

示例8: transform

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_distances [as 別名]
def transform(self, X):
        """Transforms X to cluster-distance space.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape=(n_samples, n_features)
            Data to transform.

        Returns
        -------
        X_new : {array-like, sparse matrix}, shape=(n_samples, n_clusters)
            X transformed in the new space of distances to cluster centers.
        """
        X = check_array(X, accept_sparse=['csr', 'csc'])
        check_is_fitted(self, "cluster_centers_")

        if callable(self.distance_metric):
            return self.distance_metric(X, Y=self.cluster_centers_)
        else:
            return pairwise_distances(X, Y=self.cluster_centers_,
                                      metric=self.distance_metric) 
開發者ID:alphacsc,項目名稱:alphacsc,代碼行數:23,代碼來源:k_medoids.py

示例9: test_precomputed_cross_validation

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_distances [as 別名]
def test_precomputed_cross_validation():
    # Ensure array is split correctly
    rng = np.random.RandomState(0)
    X = rng.rand(20, 2)
    D = pairwise_distances(X, metric='euclidean')
    y = rng.randint(3, size=20)
    for Est in (neighbors.KNeighborsClassifier,
                neighbors.RadiusNeighborsClassifier,
                neighbors.KNeighborsRegressor,
                neighbors.RadiusNeighborsRegressor):
        metric_score = cross_val_score(Est(algorithm_params={'n_candidates': 5}), X, y)
        precomp_score = cross_val_score(Est(metric='precomputed',
                                            algorithm_params={'n_candidates': 5},
                                            ),
                                        D, y)
        assert_array_equal(metric_score, precomp_score) 
開發者ID:VarIr,項目名稱:scikit-hubness,代碼行數:18,代碼來源:test_neighbors.py

示例10: Calculate_Distance_1

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_distances [as 別名]
def Calculate_Distance_1(dist1,dist2,metric,min_predicts,Lists_Num):
    global ThreadingState1
    global ThreadingState2
    ThreadingState1=0
    ThreadingState2=0
    i=0
    for sublist in range(Lists_Num/2):
        predicts1 = pw.pairwise_distances(dist1[i], dist2, metric=metric)
        i=i+2
        if predicts1[0][0] > 0.12:
            if ThreadingState2 is 1:
                break
            if predicts1[0][0] < min_predicts :
                min_predicts = predicts1[0][0]

        else:
            min_predicts = predicts1[0][0]
            ThreadingState1=1
            break 
開發者ID:KaiJin1995,項目名稱:MTCNN-VGG-face,代碼行數:21,代碼來源:TestMyself_Multithreading.py

示例11: _run_answer_test

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_distances [as 別名]
def _run_answer_test(pos_input, pos_output, neighbors, grad_output,
                     verbose=False, perplexity=0.1, skip_num_points=0):
    distances = pairwise_distances(pos_input).astype(np.float32)
    args = distances, perplexity, verbose
    pos_output = pos_output.astype(np.float32)
    neighbors = neighbors.astype(np.int64)
    pij_input = _joint_probabilities(*args)
    pij_input = squareform(pij_input).astype(np.float32)
    grad_bh = np.zeros(pos_output.shape, dtype=np.float32)

    from scipy.sparse import csr_matrix
    P = csr_matrix(pij_input)

    neighbors = P.indices.astype(np.int64)
    indptr = P.indptr.astype(np.int64)

    _barnes_hut_tsne.gradient(P.data, pos_output, neighbors, indptr,
                              grad_bh, 0.5, 2, 1, skip_num_points=0)
    assert_array_almost_equal(grad_bh, grad_output, decimal=4) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:21,代碼來源:test_t_sne.py

示例12: find_matching_ids

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_distances [as 別名]
def find_matching_ids(self, embs):
        if self.id_names:
            matching_ids = []
            matching_distances = []
            distance_matrix = pairwise_distances(embs, self.embeddings)
            for distance_row in distance_matrix:
                min_index = np.argmin(distance_row)
                if distance_row[min_index] < self.distance_treshold:
                    matching_ids.append(self.id_names[min_index])
                    matching_distances.append(distance_row[min_index])
                else:
                    matching_ids.append(None)
                    matching_distances.append(None)
        else:
            matching_ids = [None] * len(embs)
            matching_distances = [np.inf] * len(embs)
        return matching_ids, matching_distances 
開發者ID:habrman,項目名稱:FaceRecognition,代碼行數:19,代碼來源:main.py

示例13: dendrogram

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_distances [as 別名]
def dendrogram(data,
               vectorizer,
               method="ward",
               color_threshold=1,
               size=10,
               filename=None):
    """dendrogram.

    "median","centroid","weighted","single","ward","complete","average"
    """
    data = list(data)
    # get labels
    labels = []
    for graph in data:
        label = graph.graph.get('id', None)
        if label:
            labels.append(label)
    # transform input into sparse vectors
    data_matrix = vectorizer.transform(data)

    # labels
    if not labels:
        labels = [str(i) for i in range(data_matrix.shape[0])]

    # embed high dimensional sparse vectors in 2D
    from sklearn import metrics
    from scipy.cluster.hierarchy import linkage, dendrogram
    distance_matrix = metrics.pairwise.pairwise_distances(data_matrix)
    linkage_matrix = linkage(distance_matrix, method=method)
    plt.figure(figsize=(size, size))
    dendrogram(linkage_matrix,
               color_threshold=color_threshold,
               labels=labels,
               orientation='right')
    if filename is not None:
        plt.savefig(filename)
    else:
        plt.show() 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:40,代碼來源:__init__.py

示例14: gs_exact

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_distances [as 別名]
def gs_exact(X, N, k='auto', seed=None, replace=False,
             tol=1e-3, n_iter=300, verbose=1):
    ge_idx = gs(X, N, replace=replace)

    dist = pairwise_distances(X, n_jobs=-1)

    cost = dist.max()

    iter_i = 0

    while iter_i < n_iter:

        if verbose:
            log('iter_i = {}'.format(iter_i))

        labels = np.argmin(dist[ge_idx, :], axis=0)

        ge_idx_new = []
        for cluster in range(N):
            cluster_idx = np.nonzero(labels == cluster)[0]
            if len(cluster_idx) == 0:
                ge_idx_new.append(ge_idx[cluster])
                continue
            X_cluster = dist[cluster_idx, :]
            X_cluster = X_cluster[:, cluster_idx]
            within_idx = np.argmin(X_cluster.max(0))
            ge_idx_new.append(cluster_idx[within_idx])
        ge_idx = ge_idx_new

        cost, prev_cost = dist[ge_idx, :].min(0).max(), cost
        assert(cost <= prev_cost)

        if prev_cost - cost < tol:
            break

        iter_i += 1

    return ge_idx 
開發者ID:brianhie,項目名稱:geosketch,代碼行數:40,代碼來源:sketch.py

示例15: fisher

# 需要導入模塊: from sklearn.metrics import pairwise [as 別名]
# 或者: from sklearn.metrics.pairwise import pairwise_distances [as 別名]
def fisher(yhat,y,samples=False):
    """Fisher criterion"""
    classes = np.unique(y)
    mu = np.zeros(len(classes))
    v = np.zeros(len(classes))
    # pdb.set_trace()
    for c in classes.astype(int):
        mu[c] = np.mean(yhat[y==c])
        v[c] = np.var(yhat[y==c])

    if not samples:
        fisher = 0
        for c1,c2 in pairwise(classes.astype(int)):
            fisher += np.abs(mu[c1] - mu[c2])/np.sqrt(v[c1]+v[c2])
    else:
        # lexicase version
        fisher = np.zeros(len(yhat))
        # get closests classes to each class (min mu distance)
        mu_d = pairwise_distances(mu.reshape(-1,1))
        min_mu=np.zeros(len(classes),dtype=int)
        for i in np.arange(len(min_mu)):
            min_mu[i] = np.argsort(mu_d[i])[1]
        # for c1, pairwise(classes.astype(int)):
        #     min_mu[c1] = np.argmin()
        for i,l in enumerate(yhat.astype(int)):
            fisher[i] = np.abs(l - mu[min_mu[y[i]]])/np.sqrt(v[y[i]]+v[min_mu[y[i]]])

    # pdb.set_trace()
    return fisher 
開發者ID:lacava,項目名稱:few,代碼行數:31,代碼來源:evaluation.py


注:本文中的sklearn.metrics.pairwise.pairwise_distances方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。