本文整理匯總了Python中sklearn.metrics.matthews_corrcoef方法的典型用法代碼示例。如果您正苦於以下問題:Python metrics.matthews_corrcoef方法的具體用法?Python metrics.matthews_corrcoef怎麽用?Python metrics.matthews_corrcoef使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.metrics
的用法示例。
在下文中一共展示了metrics.matthews_corrcoef方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: multi_class_classification
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import matthews_corrcoef [as 別名]
def multi_class_classification(data_X,data_Y):
'''
calculate multi-class classification and return related evaluation metrics
'''
svc = svm.SVC(C=1, kernel='linear')
# X_train, X_test, y_train, y_test = train_test_split( data_X, data_Y, test_size=0.4, random_state=0)
clf = svc.fit(data_X, data_Y) #svm
# array = svc.coef_
# print array
predicted = cross_val_predict(clf, data_X, data_Y, cv=2)
print "accuracy",metrics.accuracy_score(data_Y, predicted)
print "f1 score macro",metrics.f1_score(data_Y, predicted, average='macro')
print "f1 score micro",metrics.f1_score(data_Y, predicted, average='micro')
print "precision score",metrics.precision_score(data_Y, predicted, average='macro')
print "recall score",metrics.recall_score(data_Y, predicted, average='macro')
print "hamming_loss",metrics.hamming_loss(data_Y, predicted)
print "classification_report", metrics.classification_report(data_Y, predicted)
print "jaccard_similarity_score", metrics.jaccard_similarity_score(data_Y, predicted)
# print "log_loss", metrics.log_loss(data_Y, predicted)
print "zero_one_loss", metrics.zero_one_loss(data_Y, predicted)
# print "AUC&ROC",metrics.roc_auc_score(data_Y, predicted)
# print "matthews_corrcoef", metrics.matthews_corrcoef(data_Y, predicted)
示例2: evaluation_analysis
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import matthews_corrcoef [as 別名]
def evaluation_analysis(true_label,predicted):
'''
return all metrics results
'''
print "accuracy",metrics.accuracy_score(true_label, predicted)
print "f1 score macro",metrics.f1_score(true_label, predicted, average='macro')
print "f1 score micro",metrics.f1_score(true_label, predicted, average='micro')
print "precision score",metrics.precision_score(true_label, predicted, average='macro')
print "recall score",metrics.recall_score(true_label, predicted, average='macro')
print "hamming_loss",metrics.hamming_loss(true_label, predicted)
print "classification_report", metrics.classification_report(true_label, predicted)
print "jaccard_similarity_score", metrics.jaccard_similarity_score(true_label, predicted)
print "log_loss", metrics.log_loss(true_label, predicted)
print "zero_one_loss", metrics.zero_one_loss(true_label, predicted)
print "AUC&ROC",metrics.roc_auc_score(true_label, predicted)
print "matthews_corrcoef", metrics.matthews_corrcoef(true_label, predicted)
示例3: matthews_correlation_coefficient_scorer
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import matthews_corrcoef [as 別名]
def matthews_correlation_coefficient_scorer(
golds: ndarray,
probs: Optional[ndarray],
preds: ndarray,
uids: Optional[List[str]] = None,
) -> Dict[str, float]:
"""Matthews correlation coefficient (MCC).
Args:
golds: Ground truth values.
probs: Predicted probabilities.
preds: Predicted values.
uids: Unique ids, defaults to None.
Returns:
Matthews correlation coefficient score.
"""
# Convert probabilistic label to hard label
if len(golds.shape) == 2:
golds = prob_to_pred(golds)
return {"matthews_corrcoef": matthews_corrcoef(golds, preds)}
示例4: test_confusion_matrix_binary
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import matthews_corrcoef [as 別名]
def test_confusion_matrix_binary():
# Test confusion matrix - binary classification case
y_true, y_pred, _ = make_prediction(binary=True)
def test(y_true, y_pred):
cm = confusion_matrix(y_true, y_pred)
assert_array_equal(cm, [[22, 3], [8, 17]])
tp, fp, fn, tn = cm.flatten()
num = (tp * tn - fp * fn)
den = np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
true_mcc = 0 if den == 0 else num / den
mcc = matthews_corrcoef(y_true, y_pred)
assert_array_almost_equal(mcc, true_mcc, decimal=2)
assert_array_almost_equal(mcc, 0.57, decimal=2)
test(y_true, y_pred)
test([str(y) for y in y_true],
[str(y) for y in y_pred])
示例5: compute_metrics
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import matthews_corrcoef [as 別名]
def compute_metrics(task_name, preds, labels):
assert len(preds) == len(labels)
if task_name == "cola":
return {"mcc": matthews_corrcoef(labels, preds)}
elif task_name == "sst-2":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "mrpc":
return acc_and_f1(preds, labels)
elif task_name == "sts-b":
return pearson_and_spearman(preds, labels)
elif task_name == "qqp":
return acc_and_f1(preds, labels)
elif task_name == "mnli":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "mnli-mm":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "qnli":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "rte":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "wnli":
return {"acc": simple_accuracy(preds, labels)}
else:
raise KeyError(task_name)
示例6: compute_metrics
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import matthews_corrcoef [as 別名]
def compute_metrics(task_name, pred_srs, label_srs):
assert len(pred_srs) == len(label_srs)
if task_name == "cola":
return {"mcc": matthews_corrcoef(label_srs, pred_srs)}
elif task_name == "sst":
return {"acc": simple_accuracy(pred_srs, label_srs)}
elif task_name == "mrpc":
return acc_and_f1(pred_srs, label_srs)
elif task_name == "stsb":
return pearson_and_spearman(pred_srs, label_srs)
elif task_name == "qqp":
return acc_and_f1(pred_srs, label_srs)
elif task_name == "mnli":
return {"acc": simple_accuracy(pred_srs, label_srs)}
elif task_name == "mnli-mm":
return {"acc": simple_accuracy(pred_srs, label_srs)}
elif task_name == "qnli":
return {"acc": simple_accuracy(pred_srs, label_srs)}
elif task_name == "rte":
return {"acc": simple_accuracy(pred_srs, label_srs)}
elif task_name == "wnli":
return {"acc": simple_accuracy(pred_srs, label_srs)}
else:
raise KeyError(task_name)
示例7: score_eval_func
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import matthews_corrcoef [as 別名]
def score_eval_func(self, y_true, y_pred, mode='accuracy'):
prob_pred = two_class_encoding(y_pred)
label_pred = np.argmax(prob_pred, axis=1)
if mode == 'accuracy':
score_pred = accuracy_score(y_true=y_true, y_pred=label_pred)
elif mode == 'precision':
score_pred = precision_score(y_true=y_true, y_pred=label_pred)
elif mode == 'recall':
score_pred = recall_score(y_true=y_true, y_pred=label_pred)
elif mode == 'f1':
score_pred = f1_score(y_true=y_true, y_pred=label_pred)
elif mode == 'MCC':
score_pred = matthews_corrcoef(y_true=y_true, y_pred=label_pred)
else:
raise ValueError('Score function mode unrecognized! Must from one in the list '
'[\'accuracy\', \'precision\',\'recall\',\'f1\',\'MCC\']')
return score_pred
示例8: validation_step
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import matthews_corrcoef [as 別名]
def validation_step(self, inputs, model: tf.keras.Model, metrics=None):
if self.metric_type == 'accuracy':
return super(SentencePredictionTask,
self).validation_step(inputs, model, metrics)
features, labels = inputs
outputs = self.inference_step(features, model)
loss = self.build_losses(
labels=labels, model_outputs=outputs, aux_losses=model.losses)
logs = {self.loss: loss}
if self.metric_type == 'matthews_corrcoef':
logs.update({
'sentence_prediction':
tf.expand_dims(
tf.math.argmax(outputs['sentence_prediction'], axis=1),
axis=0),
'labels':
labels,
})
if self.metric_type == 'pearson_spearman_corr':
logs.update({
'sentence_prediction': outputs['sentence_prediction'],
'labels': labels,
})
return logs
示例9: get_metric_fn
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import matthews_corrcoef [as 別名]
def get_metric_fn(task_name):
if task_name == "cola":
return lambda p, l: {"mcc": matthews_corrcoef(p, l)}
if task_name == "sst-2":
return lambda p, l: {"acc": simple_accuracy(p, l)}
if task_name == "mrpc":
return acc_and_f1
if task_name == "sts-b":
return pearson_and_spearman
if task_name == "qqp":
return acc_and_f1
if task_name == "mnli":
return lambda p, l: {"acc": simple_accuracy(p, l)}
if task_name == "mnli-mm":
return lambda p, l: {"acc": simple_accuracy(p, l)}
if task_name == "qnli":
return lambda p, l: {"acc": simple_accuracy(p, l)}
if task_name == "rte":
return lambda p, l: {"acc": simple_accuracy(p, l)}
if task_name == "wnli":
return lambda p, l: {"acc": simple_accuracy(p, l)}
raise KeyError(task_name)
示例10: test_matthews_corrcoef_nan
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import matthews_corrcoef [as 別名]
def test_matthews_corrcoef_nan():
assert_equal(matthews_corrcoef([0], [1]), 0.0)
assert_equal(matthews_corrcoef([0, 0], [0, 1]), 0.0)
示例11: test_matthews_corrcoef_against_numpy_corrcoef
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import matthews_corrcoef [as 別名]
def test_matthews_corrcoef_against_numpy_corrcoef():
rng = np.random.RandomState(0)
y_true = rng.randint(0, 2, size=20)
y_pred = rng.randint(0, 2, size=20)
assert_almost_equal(matthews_corrcoef(y_true, y_pred),
np.corrcoef(y_true, y_pred)[0, 1], 10)
示例12: test_matthews_corrcoef_against_jurman
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import matthews_corrcoef [as 別名]
def test_matthews_corrcoef_against_jurman():
# Check that the multiclass matthews_corrcoef agrees with the definition
# presented in Jurman, Riccadonna, Furlanello, (2012). A Comparison of MCC
# and CEN Error Measures in MultiClass Prediction
rng = np.random.RandomState(0)
y_true = rng.randint(0, 2, size=20)
y_pred = rng.randint(0, 2, size=20)
sample_weight = rng.rand(20)
C = confusion_matrix(y_true, y_pred, sample_weight=sample_weight)
N = len(C)
cov_ytyp = sum([
C[k, k] * C[m, l] - C[l, k] * C[k, m]
for k in range(N) for m in range(N) for l in range(N)
])
cov_ytyt = sum([
C[:, k].sum() *
np.sum([C[g, f] for f in range(N) for g in range(N) if f != k])
for k in range(N)
])
cov_ypyp = np.sum([
C[k, :].sum() *
np.sum([C[f, g] for f in range(N) for g in range(N) if f != k])
for k in range(N)
])
mcc_jurman = cov_ytyp / np.sqrt(cov_ytyt * cov_ypyp)
mcc_ours = matthews_corrcoef(y_true, y_pred, sample_weight)
assert_almost_equal(mcc_ours, mcc_jurman, 10)
示例13: test_matthews_corrcoef
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import matthews_corrcoef [as 別名]
def test_matthews_corrcoef():
rng = np.random.RandomState(0)
y_true = ["a" if i == 0 else "b" for i in rng.randint(0, 2, size=20)]
# corrcoef of same vectors must be 1
assert_almost_equal(matthews_corrcoef(y_true, y_true), 1.0)
# corrcoef, when the two vectors are opposites of each other, should be -1
y_true_inv = ["b" if i == "a" else "a" for i in y_true]
assert_almost_equal(matthews_corrcoef(y_true, y_true_inv), -1)
y_true_inv2 = label_binarize(y_true, ["a", "b"])
y_true_inv2 = np.where(y_true_inv2, 'a', 'b')
assert_almost_equal(matthews_corrcoef(y_true, y_true_inv2), -1)
# For the zero vector case, the corrcoef cannot be calculated and should
# result in a RuntimeWarning
mcc = assert_warns_div0(matthews_corrcoef, [0, 0, 0, 0], [0, 0, 0, 0])
# But will output 0
assert_almost_equal(mcc, 0.)
# And also for any other vector with 0 variance
mcc = assert_warns_div0(matthews_corrcoef, y_true, ['a'] * len(y_true))
# But will output 0
assert_almost_equal(mcc, 0.)
# These two vectors have 0 correlation and hence mcc should be 0
y_1 = [1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1]
y_2 = [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1]
assert_almost_equal(matthews_corrcoef(y_1, y_2), 0.)
# Check that sample weight is able to selectively exclude
mask = [1] * 10 + [0] * 10
# Now the first half of the vector elements are alone given a weight of 1
# and hence the mcc will not be a perfect 0 as in the previous case
assert_raises(AssertionError, assert_almost_equal,
matthews_corrcoef(y_1, y_2, sample_weight=mask), 0.)
示例14: test_matthews_corrcoef_overflow
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import matthews_corrcoef [as 別名]
def test_matthews_corrcoef_overflow(n_points):
# https://github.com/scikit-learn/scikit-learn/issues/9622
rng = np.random.RandomState(20170906)
def mcc_safe(y_true, y_pred):
conf_matrix = confusion_matrix(y_true, y_pred)
true_pos = conf_matrix[1, 1]
false_pos = conf_matrix[1, 0]
false_neg = conf_matrix[0, 1]
n_points = len(y_true)
pos_rate = (true_pos + false_neg) / n_points
activity = (true_pos + false_pos) / n_points
mcc_numerator = true_pos / n_points - pos_rate * activity
mcc_denominator = activity * pos_rate * (1 - activity) * (1 - pos_rate)
return mcc_numerator / np.sqrt(mcc_denominator)
def random_ys(n_points): # binary
x_true = rng.random_sample(n_points)
x_pred = x_true + 0.2 * (rng.random_sample(n_points) - 0.5)
y_true = (x_true > 0.5)
y_pred = (x_pred > 0.5)
return y_true, y_pred
arr = np.repeat([0., 1.], n_points) # binary
assert_almost_equal(matthews_corrcoef(arr, arr), 1.0)
arr = np.repeat([0., 1., 2.], n_points) # multiclass
assert_almost_equal(matthews_corrcoef(arr, arr), 1.0)
y_true, y_pred = random_ys(n_points)
assert_almost_equal(matthews_corrcoef(y_true, y_true), 1.0)
assert_almost_equal(matthews_corrcoef(y_true, y_pred),
mcc_safe(y_true, y_pred))
示例15: compute_mcc
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import matthews_corrcoef [as 別名]
def compute_mcc(predicts, labels):
return 100.0 * matthews_corrcoef(labels, predicts)