本文整理匯總了Python中sklearn.metrics.label_ranking_average_precision_score方法的典型用法代碼示例。如果您正苦於以下問題:Python metrics.label_ranking_average_precision_score方法的具體用法?Python metrics.label_ranking_average_precision_score怎麽用?Python metrics.label_ranking_average_precision_score使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.metrics
的用法示例。
在下文中一共展示了metrics.label_ranking_average_precision_score方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: check_alternative_lrap_implementation
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import label_ranking_average_precision_score [as 別名]
def check_alternative_lrap_implementation(lrap_score, n_classes=5,
n_samples=20, random_state=0):
_, y_true = make_multilabel_classification(n_features=1,
allow_unlabeled=False,
random_state=random_state,
n_classes=n_classes,
n_samples=n_samples)
# Score with ties
y_score = sparse_random_matrix(n_components=y_true.shape[0],
n_features=y_true.shape[1],
random_state=random_state)
if hasattr(y_score, "toarray"):
y_score = y_score.toarray()
score_lrap = label_ranking_average_precision_score(y_true, y_score)
score_my_lrap = _my_lrap(y_true, y_score)
assert_almost_equal(score_lrap, score_my_lrap)
# Uniform score
random_state = check_random_state(random_state)
y_score = random_state.uniform(size=(n_samples, n_classes))
score_lrap = label_ranking_average_precision_score(y_true, y_score)
score_my_lrap = _my_lrap(y_true, y_score)
assert_almost_equal(score_lrap, score_my_lrap)
示例2: test_lrap_sample_weighting_zero_labels
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import label_ranking_average_precision_score [as 別名]
def test_lrap_sample_weighting_zero_labels():
# Degenerate sample labeling (e.g., zero labels for a sample) is a valid
# special case for lrap (the sample is considered to achieve perfect
# precision), but this case is not tested in test_common.
# For these test samples, the APs are 0.5, 0.75, and 1.0 (default for zero
# labels).
y_true = np.array([[1, 0, 0, 0], [1, 0, 0, 1], [0, 0, 0, 0]],
dtype=np.bool)
y_score = np.array([[0.3, 0.4, 0.2, 0.1], [0.1, 0.2, 0.3, 0.4],
[0.4, 0.3, 0.2, 0.1]])
samplewise_lraps = np.array([0.5, 0.75, 1.0])
sample_weight = np.array([1.0, 1.0, 0.0])
assert_almost_equal(
label_ranking_average_precision_score(y_true, y_score,
sample_weight=sample_weight),
np.sum(sample_weight * samplewise_lraps) / np.sum(sample_weight))
示例3: lwlrap
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import label_ranking_average_precision_score [as 別名]
def lwlrap(truth, scores):
"""Calculate the overall lwlrap using sklearn.metrics.lrap."""
# sklearn doesn't correctly apply weighting to samples with no labels, so just skip them.
sample_weight = np.sum(truth > 0, axis=1)
nonzero_weight_sample_indices = np.flatnonzero(sample_weight > 0)
overall_lwlrap = label_ranking_average_precision_score(
truth[nonzero_weight_sample_indices, :] > 0,
scores[nonzero_weight_sample_indices, :],
sample_weight=sample_weight[nonzero_weight_sample_indices])
return overall_lwlrap
示例4: test_lrap_error_raised
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import label_ranking_average_precision_score [as 別名]
def test_lrap_error_raised():
check_lrap_error_raised(label_ranking_average_precision_score)
示例5: test_alternative_lrap_implementation
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import label_ranking_average_precision_score [as 別名]
def test_alternative_lrap_implementation(n_samples, n_classes, random_state):
check_alternative_lrap_implementation(
label_ranking_average_precision_score,
n_classes, n_samples, random_state)
示例6: lrap
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import label_ranking_average_precision_score [as 別名]
def lrap(prediction, target):
# Calculate the label ranking average precision (LRAP) for every sample
return label_ranking_average_precision_score(target, prediction)
示例7: test_label_ranking_avp
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import label_ranking_average_precision_score [as 別名]
def test_label_ranking_avp():
for fn in [label_ranking_average_precision_score, _my_lrap]:
yield check_lrap_toy, fn
yield check_lrap_without_tie_and_increasing_score, fn
yield check_lrap_only_ties, fn
yield check_zero_or_all_relevant_labels, fn
yield check_lrap_error_raised, label_ranking_average_precision_score
for n_samples, n_classes, random_state in product((1, 2, 8, 20),
(2, 5, 10),
range(1)):
yield (check_alternative_lrap_implementation,
label_ranking_average_precision_score,
n_classes, n_samples, random_state)
示例8: evaluate
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import label_ranking_average_precision_score [as 別名]
def evaluate(experiment_path, meta_data=False, xml_dir="", train_dir="",
submission_file=""):
pickle_path = os.path.join(experiment_path, "predictions.pkl")
with open(pickle_path, 'rb') as input:
y_trues = pickle.load(input)
y_scores = pickle.load(input)
training_segments = pickle.load(input)
if meta_data:
elevation_scores = compute_elevation_scores(training_segments, xml_dir,
train_dir)
## Combine the scores using Bayes Thm.
normalize = np.array([np.sum(y_s * e_s) for y_s, e_s in zip(y_scores,
elevation_scores)])
y_scores = y_scores * elevation_scores / normalize[:, None]
if submission_file:
write_to_submission_file(submission_file, y_scores, training_segments,
train_dir)
return
map_score = mean_average_precision(y_trues, y_scores)
auroc_score = area_under_roc_curve(y_trues, y_scores)
# coverage error
coverage_error = metrics.coverage_error(y_trues, y_scores)
# label ranking average precision
lrap = metrics.label_ranking_average_precision_score(y_trues, y_scores)
# ranking loss
ranking_loss = metrics.label_ranking_loss(y_trues, y_scores)
print("")
print("- Top 1:", top_n(y_trues, y_scores, 1))
print("- Top 2:", top_n(y_trues, y_scores, 2))
print("- Top 3:", top_n(y_trues, y_scores, 3))
print("- Top 4:", top_n(y_trues, y_scores, 4))
print("- Top 5:", top_n(y_trues, y_scores, 5))
print("")
print("Mean Average Precision: ", map_score)
print("Area Under ROC Curve: ", auroc_score)
print("Coverage Error: ", coverage_error)
print("Label Ranking Average Precision: ", lrap)
print("Ranking Loss: ", ranking_loss)
print("Total predictions: ", len(y_scores))
return {
"map":map_score,
"auroc":auroc_score,
"coverage_error":coverage_error,
"lrap":lrap,
"ranking_loss": ranking_loss,
"top_1":top_n(y_trues, y_scores, 1),
"top_5":top_n(y_trues, y_scores, 5),
}