本文整理匯總了Python中sklearn.metrics方法的典型用法代碼示例。如果您正苦於以下問題:Python sklearn.metrics方法的具體用法?Python sklearn.metrics怎麽用?Python sklearn.metrics使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn
的用法示例。
在下文中一共展示了sklearn.metrics方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: accuracy_score
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import metrics [as 別名]
def accuracy_score(y, y_pred):
"""Compute accuracy score
Computes accuracy score for classification tasks. Works for both
binary and multiclass classification.
Parameters
----------
y: np.ndarray
Of shape `(N_samples,)`
y_pred: np.ndarray
Of shape `(N_samples,)`
Returns
-------
score: float
The fraction of correctly classified samples. A number between 0
and 1.
"""
y = _ensure_class_labels(y)
y_pred = _ensure_class_labels(y_pred)
return sklearn.metrics.accuracy_score(y, y_pred)
示例2: calculate_regression_metrics
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import metrics [as 別名]
def calculate_regression_metrics(trained_sklearn_estimator, x_test, y_test):
"""
Given a trained estimator, calculate metrics.
Args:
trained_sklearn_estimator (sklearn.base.BaseEstimator): a scikit-learn estimator that has been `.fit()`
y_test (numpy.ndarray): A 1d numpy array of the y_test set (predictions)
x_test (numpy.ndarray): A 2d numpy array of the x_test set (features)
Returns:
dict: A dictionary of metrics objects
"""
# Get predictions
predictions = trained_sklearn_estimator.predict(x_test)
# Calculate individual metrics
mean_squared_error = skmetrics.mean_squared_error(y_test, predictions)
mean_absolute_error = skmetrics.mean_absolute_error(y_test, predictions)
result = {'mean_squared_error': mean_squared_error, 'mean_absolute_error': mean_absolute_error}
return result
示例3: log
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import metrics [as 別名]
def log(self, main_keys, metric_keys, values):
"""
Actually log new values in csv and Progress Saver dict internally.
Args:
main_keys: Main key in which data will be stored. Normally is either 'train' for training metrics or 'val' for validation metrics.
metric_keys: Needs to follow the list length of self.progress_saver[main_key(s)]. List of metric keys that are extended with new values.
values: Needs to be a list of the same structure as metric_keys. Actual values that are appended.
"""
if not isinstance(main_keys, list): main_keys = [main_keys]
if not isinstance(metric_keys, list): metric_keys = [metric_keys]
if not isinstance(values, list): values = [values]
#Log data to progress saver dict.
for main_key in main_keys:
for value, metric_key in zip(values, metric_keys):
self.progress_saver[main_key][metric_key].append(value)
#Append data to csv.
self.csv_loggers[main_key].log(values)
示例4: optimize_model
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import metrics [as 別名]
def optimize_model(task, param_name, test_size: float, binary=False) -> None:
x, y = task.create_train_data()
def objective(trial):
train_x, test_x, train_y, test_y = train_test_split(x, y, test_size=test_size)
param = redshells.factory.get_optuna_param(param_name, trial)
model = task.create_model()
model.set_params(**param)
model.fit(train_x, train_y)
predictions = model.predict(test_x)
if binary:
predictions = np.rint(predictions)
return 1.0 - sklearn.metrics.accuracy_score(test_y, predictions)
study = optuna.create_study()
study.optimize(objective, n_trials=100)
task.dump(dict(best_params=study.best_params, best_value=study.best_value))
示例5: compute_perf_metrics
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import metrics [as 別名]
def compute_perf_metrics(self, per_task=False):
"""Returns the ROC_AUC metrics for each task based on the accumulated predictions. If
per_task is False, returns the average ROC AUC over tasks.
Args:
per_task (bool): Whether to return individual ROC AUC scores for each task
Returns:
A tuple (roc_auc, std):
roc_auc: A numpy array of ROC AUC scores, if per_task is True. Otherwise,
a float giving the mean ROC AUC score over tasks.
std: Placeholder for an array of standard deviations. Always None for this class.
"""
roc_auc_scores = self.perf_metrics[0]
if per_task or self.num_tasks == 1:
return (roc_auc_scores, None)
else:
return (roc_auc_scores.mean(), None)
示例6: trash_small_cluster
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import metrics [as 別名]
def trash_small_cluster(self, **kargs):
cleancluster.trash_small_cluster(self, **kargs)
#~ def compute_spike_waveforms_similarity(self, method='cosine_similarity', size_max = 1e7):
#~ """This compute the similarity spike by spike.
#~ """
#~ spike_waveforms_similarity = None
#~ if self.some_waveforms is not None:
#~ wf = self.some_waveforms
#~ wf = wf.reshape(wf.shape[0], -1)
#~ if wf.size<size_max:
#~ spike_waveforms_similarity = metrics.compute_similarity(wf, method)
#~ if spike_waveforms_similarity is None:
#~ self.arrays.detach_array('spike_waveforms_similarity')
#~ self.spike_waveforms_similarity = None
#~ else:
#~ self.arrays.add_array('spike_waveforms_similarity', spike_waveforms_similarity.astype('float32'), self.memory_mode)
#~ return self.spike_waveforms_similarity
示例7: compute_cluster_similarity
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import metrics [as 別名]
def compute_cluster_similarity(self, method='cosine_similarity_with_max'):
if self.centroids_median is None:
self.compute_all_centroid()
#~ t1 = time.perf_counter()
labels = self.cluster_labels
mask = labels>=0
wfs = self.centroids_median[mask, :, :]
wfs = wfs.reshape(wfs.shape[0], -1)
if wfs.size == 0:
cluster_similarity = None
else:
cluster_similarity = metrics.cosine_similarity_with_max(wfs)
if cluster_similarity is None:
self.arrays.detach_array('cluster_similarity')
self.cluster_similarity = None
else:
self.arrays.add_array('cluster_similarity', cluster_similarity.astype('float32'), self.memory_mode)
#~ t2 = time.perf_counter()
#~ print('compute_cluster_similarity', t2-t1)
示例8: compute_spike_silhouette
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import metrics [as 別名]
def compute_spike_silhouette(self, size_max=1e7):
#~ t1 = time.perf_counter()
spike_silhouette = None
#~ wf = self.some_waveforms
if self.some_peaks_index is not None:
wf = self.get_some_waveforms(peaks_index=self.some_peaks_index)
wf = wf.reshape(wf.shape[0], -1)
labels = self.all_peaks['cluster_label'][self.some_peaks_index]
if wf.size<size_max:
spike_silhouette = metrics.compute_silhouette(wf, labels, metric='euclidean')
if spike_silhouette is None:
self.arrays.detach_array('spike_silhouette')
self.spike_silhouette = None
else:
self.arrays.add_array('spike_silhouette', spike_silhouette.astype('float32'), self.memory_mode)
#~ t2 = time.perf_counter()
#~ print('compute_spike_silhouette', t2-t1)
示例9: convert_sklearn_metric_function
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import metrics [as 別名]
def convert_sklearn_metric_function(scoring):
"""If ``scoring`` is a sklearn metric function, convert it to a
sklearn scorer and return it. Otherwise, return ``scoring`` unchanged."""
if callable(scoring):
module = getattr(scoring, '__module__', None)
# those are scoring objects returned by make_scorer starting
# from sklearn 0.22
scorer_names = ('_PredictScorer', '_ProbaScorer', '_ThresholdScorer')
if (
hasattr(module, 'startswith') and
module.startswith('sklearn.metrics.') and
not module.startswith('sklearn.metrics.scorer') and
not module.startswith('sklearn.metrics.tests.') and
not scoring.__class__.__name__ in scorer_names
):
return make_scorer(scoring)
return scoring
示例10: apply_lens
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import metrics [as 別名]
def apply_lens(df, lens='pca', dist='euclidean', n_dim=2, **kwargs):
"""
input: N x F dataframe of observations
output: N x n_dim image of input data under lens function
"""
if n_dim != 2:
raise 'error: image of data set must be two-dimensional'
if dist not in ['euclidean', 'correlation']:
raise 'error: only euclidean and correlation distance metrics are supported'
if lens == 'pca' and dist != 'euclidean':
raise 'error: PCA requires the use of euclidean distance metric'
if lens == 'pca':
df_lens = pd.DataFrame(decomposition.PCA(n_components=n_dim, **kwargs).fit_transform(df), df.index)
elif lens == 'mds':
D = metrics.pairwise.pairwise_distances(df, metric=dist)
df_lens = pd.DataFrame(manifold.MDS(n_components=n_dim, **kwargs).fit_transform(D), df.index)
elif lens == 'neighbor':
D = metrics.pairwise.pairwise_distances(df, metric=dist)
df_lens = pd.DataFrame(manifold.SpectralEmbedding(n_components=n_dim, **kwargs).fit_transform(D), df.index)
else:
raise 'error: only PCA, MDS, neighborhood lenses are supported'
return df_lens
示例11: score
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import metrics [as 別名]
def score(metrics, pred, ref):
""" Function to score and print custom metrics """
score_dict = OrderedDict()
if metrics:
for metric in metrics:
if metric == 'pc':
score_dict[metric] = pearson_correlation(pred,ref)
elif metric == 'mae':
score_dict[metric] = mean_absolute_error(pred, ref)
elif metric == 'mse':
score_dict[metric] = mean_squared_error(pred, ref)
elif metric == 'rmse':
score_dict[metric] = root_mean_squared_error(pred, ref)
else:
logger.error('Invalid metric: %s',metric)
return score_dict
示例12: __init__
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import metrics [as 別名]
def __init__(
self,
metric_name: str,
reduce_group: Any = group.WORLD,
reduce_op: Any = ReduceOp.SUM,
**kwargs,
):
"""
Args:
metric_name: the metric name to import and compute from scikit-learn.metrics
reduce_group: the process group for DDP reduces (only needed for DDP training).
Defaults to all processes (world)
reduce_op: the operation to perform during reduction within DDP (only needed for DDP training).
Defaults to sum.
**kwargs: additonal keyword arguments (will be forwarded to metric call)
"""
super().__init__(name=metric_name,
reduce_group=reduce_group,
reduce_op=reduce_op)
self.metric_kwargs = kwargs
lightning_logger.debug(
f'Metric {self.__class__.__name__} is using Sklearn as backend, meaning that'
' every metric call will cause a GPU synchronization, which may slow down your code'
)
示例13: analyze
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import metrics [as 別名]
def analyze(probas, target):
"""Analyzes predictions and returns results.
Computes different metrics (specified by `constants.METRICS`) comparing
predictions to true labels.
Args:
probas: `np.array` with predicted probabilities.
target: `np.array` of `int` with true labels.
Returns:
Dictionary of `str` to `float` mapping metric names to the corresponding
scores.
"""
results = {}
for metric_type, sub_metrics in _METRICS.iteritems():
for metric_name in sub_metrics:
metric = getattr(metrics, metric_name)
results[metric_name] = metric(
target,
(probas if metric_type == _CONTINUOUS_TYPE
else probas > _ACCURACY_THRESHOLD))
return results
示例14: compute_metrics_cv
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import metrics [as 別名]
def compute_metrics_cv(self, X, Y):
"""Compute cross-validated metrics.
Trains this model on data X with labels Y.
Returns a MetricList with the name, scoring type, and value for each
Metric. Note that these values may be numpy floating points, and should
be converted prior to insertion in a database.
Parameters
----------
X : numpy array-like or pd.DataFrame
data
Y : numpy array-like or pd.DataFrame or pd.DataSeries
labels
"""
scorings, scorings_ = self._get_scorings()
# compute scores
scores = self.cv_score_mean(X, Y, scorings_)
# unpack into MetricList
metric_list = self.scores_to_metriclist(scorings, scores)
return metric_list
示例15: compute_metrics_train_test
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import metrics [as 別名]
def compute_metrics_train_test(self, X, Y, n):
"""Compute metrics on test set.
"""
X, Y = Model._format_matrices(X, Y)
X_train, Y_train = X[:n], Y[:n]
X_test, Y_test = X[n:], Y[n:]
scorings, scorings_ = self._get_scorings()
# Determine binary/multiclass classification
classes = np.unique(Y)
params = self._get_params(classes)
# fit model on entire training set
self.model.fit(X_train, Y_train)
scores = {}
for scoring in scorings_:
scores[scoring] = self._do_scoring(scoring, params, self.model,
X_test, Y_test)
metric_list = self.scores_to_metriclist(scorings, scores)
return metric_list