當前位置: 首頁>>代碼示例>>Python>>正文


Python metrics.euclidean_distances方法代碼示例

本文整理匯總了Python中sklearn.metrics.euclidean_distances方法的典型用法代碼示例。如果您正苦於以下問題:Python metrics.euclidean_distances方法的具體用法?Python metrics.euclidean_distances怎麽用?Python metrics.euclidean_distances使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.metrics的用法示例。


在下文中一共展示了metrics.euclidean_distances方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_equal_similarities_and_preferences

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def test_equal_similarities_and_preferences():
    # Unequal distances
    X = np.array([[0, 0], [1, 1], [-2, -2]])
    S = -euclidean_distances(X, squared=True)

    assert not _equal_similarities_and_preferences(S, np.array(0))
    assert not _equal_similarities_and_preferences(S, np.array([0, 0]))
    assert not _equal_similarities_and_preferences(S, np.array([0, 1]))

    # Equal distances
    X = np.array([[0, 0], [1, 1]])
    S = -euclidean_distances(X, squared=True)

    # Different preferences
    assert not _equal_similarities_and_preferences(S, np.array([0, 1]))

    # Same preferences
    assert _equal_similarities_and_preferences(S, np.array([0, 0]))
    assert _equal_similarities_and_preferences(S, np.array(0)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:21,代碼來源:test_affinity_propagation.py

示例2: predict

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def predict(self, X):
        """ A reference implementation of a prediction for a classifier.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            The input samples.

        Returns
        -------
        y : ndarray, shape (n_samples,)
            The label for each sample is the label of the closest sample
            seen during fit.
        """
        # Check is fit had been called
        check_is_fitted(self, ['X_', 'y_'])

        # Input validation
        X = check_array(X)

        closest = np.argmin(euclidean_distances(X, self.X_), axis=1)
        return self.y_[closest] 
開發者ID:scikit-learn-contrib,項目名稱:project-template,代碼行數:24,代碼來源:_template.py

示例3: fit_transform

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def fit_transform(self, X, y=None, init=None):
        """
        Fit the data from X, and returns the embedded coordinates

        Parameters
        ----------
        X : array, shape=[n_samples, n_features], or [n_samples, n_samples] \
                if dissimilarity='precomputed'
            Input data.

        init : {None or ndarray, shape (n_samples,)}, optional
            If None, randomly chooses the initial configuration
            if ndarray, initialize the SMACOF algorithm with this array.

        """
        X = check_array(X)
        if X.shape[0] == X.shape[1] and self.dissimilarity != "precomputed":
            warnings.warn("The MDS API has changed. ``fit`` now constructs an"
                          " dissimilarity matrix from data. To use a custom "
                          "dissimilarity matrix, set "
                          "``dissimilarity=precomputed``.")

        if self.dissimilarity == "precomputed":
            self.dissimilarity_matrix_ = X
        elif self.dissimilarity == "euclidean":
            self.dissimilarity_matrix_ = euclidean_distances(X)
        else:
            raise ValueError("Proximity must be 'precomputed' or 'euclidean'."
                             " Got %s instead" % str(self.dissimilarity))

        self.embedding_, self.stress_, self.n_iter_ = smacof_p(
            self.dissimilarity_matrix_, self.n_uq, metric=self.metric,
            n_components=self.n_components, init=init, n_init=self.n_init,
            n_jobs=self.n_jobs, max_iter=self.max_iter, verbose=self.verbose,
            eps=self.eps, random_state=self.random_state,
            return_n_iter=True)

        return self.embedding_ 
開發者ID:ntucllab,項目名稱:libact,代碼行數:40,代碼來源:mdsp.py

示例4: _optimize

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def _optimize(self, X, y):
        nb_prototypes = self.c_w_.size

        n_data, n_dim = X.shape
        prototypes = self.w_.reshape(nb_prototypes, n_dim)

        for i in range(n_data):
            xi = X[i]
            c_xi = int(y[i])
            best_euclid_corr = np.inf
            best_euclid_incorr = np.inf

            # find nearest correct and nearest wrong prototype
            for j in range(prototypes.shape[0]):
                if self.c_w_[j] == c_xi:
                    eucl_dis = euclidean_distances(xi.reshape(1, xi.size),
                                                   prototypes[j]
                                                   .reshape(1, prototypes[j]
                                                   .size))
                    if eucl_dis < best_euclid_corr:
                        best_euclid_corr = eucl_dis
                        corr_index = j
                else:
                    eucl_dis = euclidean_distances(xi.reshape(1, xi.size),
                                                   prototypes[j]
                                                   .reshape(1, prototypes[j]
                                                   .size))
                    if eucl_dis < best_euclid_incorr:
                        best_euclid_incorr = eucl_dis
                        incorr_index = j

            # Update nearest wrong prototype and nearest correct prototype
            # if correct prototype isn't the nearest
            if best_euclid_incorr < best_euclid_corr:
                self._update_prototype(j=corr_index, c_xi=c_xi, xi=xi,
                                       prototypes=prototypes)
                self._update_prototype(j=incorr_index, c_xi=c_xi, xi=xi,
                                       prototypes=prototypes) 
開發者ID:scikit-multiflow,項目名稱:scikit-multiflow,代碼行數:40,代碼來源:robust_soft_learning_vector_quantization.py

示例5: test_random_projection_embedding_quality

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def test_random_projection_embedding_quality():
    data, _ = make_sparse_random_data(8, 5000, 15000)
    eps = 0.2

    original_distances = euclidean_distances(data, squared=True)
    original_distances = original_distances.ravel()
    non_identical = original_distances != 0.0

    # remove 0 distances to avoid division by 0
    original_distances = original_distances[non_identical]

    for RandomProjection in all_RandomProjection:
        rp = RandomProjection(n_components='auto', eps=eps, random_state=0)
        projected = rp.fit_transform(data)

        projected_distances = euclidean_distances(projected, squared=True)
        projected_distances = projected_distances.ravel()

        # remove 0 distances to avoid division by 0
        projected_distances = projected_distances[non_identical]

        distances_ratio = projected_distances / original_distances

        # check that the automatically tuned values for the density respect the
        # contract for eps: pairwise distances are preserved according to the
        # Johnson-Lindenstrauss lemma
        assert_less(distances_ratio.max(), 1 + eps)
        assert_less(1 - eps, distances_ratio.min()) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:30,代碼來源:test_random_projection.py

示例6: test_affinity_propagation

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def test_affinity_propagation():
    # Affinity Propagation algorithm
    # Compute similarities
    S = -euclidean_distances(X, squared=True)
    preference = np.median(S) * 10
    # Compute Affinity Propagation
    cluster_centers_indices, labels = affinity_propagation(
        S, preference=preference)

    n_clusters_ = len(cluster_centers_indices)

    assert_equal(n_clusters, n_clusters_)

    af = AffinityPropagation(preference=preference, affinity="precomputed")
    labels_precomputed = af.fit(S).labels_

    af = AffinityPropagation(preference=preference, verbose=True)
    labels = af.fit(X).labels_

    assert_array_equal(labels, labels_precomputed)

    cluster_centers_indices = af.cluster_centers_indices_

    n_clusters_ = len(cluster_centers_indices)
    assert_equal(np.unique(labels).size, n_clusters_)
    assert_equal(n_clusters, n_clusters_)

    # Test also with no copy
    _, labels_no_copy = affinity_propagation(S, preference=preference,
                                             copy=False)
    assert_array_equal(labels, labels_no_copy)

    # Test input validation
    assert_raises(ValueError, affinity_propagation, S[:, :-1])
    assert_raises(ValueError, affinity_propagation, S, damping=0)
    af = AffinityPropagation(affinity="unknown")
    assert_raises(ValueError, af.fit, X) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:39,代碼來源:test_affinity_propagation.py

示例7: test_affinity_propagation_equal_mutual_similarities

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def test_affinity_propagation_equal_mutual_similarities():
    X = np.array([[-1, 1], [1, -1]])
    S = -euclidean_distances(X, squared=True)

    # setting preference > similarity
    cluster_center_indices, labels = assert_warns_message(
        UserWarning, "mutually equal", affinity_propagation, S, preference=0)

    # expect every sample to become an exemplar
    assert_array_equal([0, 1], cluster_center_indices)
    assert_array_equal([0, 1], labels)

    # setting preference < similarity
    cluster_center_indices, labels = assert_warns_message(
        UserWarning, "mutually equal", affinity_propagation, S, preference=-10)

    # expect one cluster, with arbitrary (first) sample as exemplar
    assert_array_equal([0], cluster_center_indices)
    assert_array_equal([0, 0], labels)

    # setting different preferences
    cluster_center_indices, labels = assert_no_warnings(
        affinity_propagation, S, preference=[-20, -10])

    # expect one cluster, with highest-preference sample as exemplar
    assert_array_equal([1], cluster_center_indices)
    assert_array_equal([0, 0], labels) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:29,代碼來源:test_affinity_propagation.py

示例8: predict

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def predict(self, x):
        """
        Predict clusters for one sample

        Parameters
        ----------
        x: ndarray
            Samples to predict

        Returns
        -------
        label: int
            Predicted cluster
        """

        # Find the closest cluster to samples
        # To do it, project x to appropriate subspace, find distance to mean value and norm by variance
        min_score = None
        closest = None
        for i in range(self.clusters):
            projection = x[:, self.features_[i]]
            norm = euclidean_distances(projection, self.means_[i])
            score = norm / self.vars_[i]
            if min_score is None or score < min_score:
                min_score = score
                closest = i
        return closest 
開發者ID:danilkolikov,項目名稱:fsfc,代碼行數:29,代碼來源:LFSBSS.py

示例9: wmdistance

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def wmdistance(sent1_embs, sent2_embs):
    wmd = 0.0
    for _,x in sent1_embs:
        min_dist = sys.float_info.max
        for _,y in sent2_embs:
            x = x.reshape(1, -1)
            y = y.reshape(1, -1)
            distance = euclidean_distances(x,y)
            if distance < min_dist:
                min_dist = distance
        wmd += min_dist
    return - float(wmd) / (len(sent1_embs) + len(sent2_embs))
    
# Note that this breaks the symmetry and is not a distance anymore:
# To overcome this, we compute the average of the score in both side: (weigthedWMD(a,b) + weightedWMD(b,a))/2 
開發者ID:UKPLab,項目名稱:coling2018_fake-news-challenge,代碼行數:17,代碼來源:word_mover_distance.py

示例10: weighted_wmdistance

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def weighted_wmdistance(sent1_embs, sent2_embs, idfs, mean):
    wmd = 0.0
    for token1, x in sent1_embs:
        min_dist = sys.float_info.max
        weight = idfs[token1] if token1 in idfs else mean
        for _, y in sent2_embs:
            print(x, x.shape())
            print(y, y.shape())
            score = weight * euclidean_distances(x,y) 
            exit(0)
            if score < min_dist:
                min_dist = score
        wmd += min_dist
    return - float(wmd) / (len(sent1_embs) + len(sent2_embs)) 
開發者ID:UKPLab,項目名稱:coling2018_fake-news-challenge,代碼行數:16,代碼來源:word_mover_distance.py

示例11: test_shuffle_equal

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def test_shuffle_equal(verbose):
    # for this data set there shouldn't be any equal distances,
    # and shuffle should make no difference
    X, _ = make_classification(random_state=12354)
    dist = euclidean_distances(X)
    skew_shuffle, skew_no_shuffle = \
        [Hubness(metric='precomputed', shuffle_equal=v, verbose=verbose)
         .fit(dist).score() for v in [True, False]]
    assert skew_no_shuffle == skew_shuffle 
開發者ID:VarIr,項目名稱:scikit-hubness,代碼行數:11,代碼來源:test_estimation.py

示例12: test_sparse_equal_dense

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def test_sparse_equal_dense(verbose, shuffle_equal):
    X, _ = make_classification()
    dist_dense = euclidean_distances(X)
    dist_sparse = csr_matrix(dist_dense)

    hub = Hubness(metric='precomputed',
                  shuffle_equal=shuffle_equal,
                  verbose=verbose)
    hub.fit(dist_dense)
    skew_dense = hub.score(has_self_distances=True)

    hub.fit(dist_sparse)
    skew_sparse = hub.score(has_self_distances=True)

    np.testing.assert_almost_equal(skew_dense, skew_sparse) 
開發者ID:VarIr,項目名稱:scikit-hubness,代碼行數:17,代碼來源:test_estimation.py

示例13: test_sparse_equal_dense_if_variable_hits_per_row

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def test_sparse_equal_dense_if_variable_hits_per_row(shuffle_equal):
    X, _ = make_classification(random_state=123)
    dist = euclidean_distances(X)
    dist[0, 1:3] = 999
    dist[1:3, 0] = 999
    dist[1, 1:5] = 999
    dist[1:5, 1] = 999
    sparse = dist.copy()
    sparse[0, 1:3] = 0
    sparse[1:3, 0] = 0
    sparse[1, 1:5] = 0
    sparse[1:5, 1] = 0
    sparse = csr_matrix(sparse)

    hub = Hubness(metric='precomputed',
                  shuffle_equal=shuffle_equal,
                  random_state=123)
    hub.fit(dist)
    skew_dense = hub.score(has_self_distances=True)

    hub = Hubness(metric='precomputed',
                  shuffle_equal=shuffle_equal,
                  random_state=123)
    hub.fit(sparse)
    skew_sparse = hub.score(has_self_distances=True)

    np.testing.assert_almost_equal(skew_dense, skew_sparse, decimal=2) 
開發者ID:VarIr,項目名稱:scikit-hubness,代碼行數:29,代碼來源:test_estimation.py

示例14: test_hubness_against_distance

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def test_hubness_against_distance(has_self_distances):
    """Test hubness class against distance-based methods."""

    np.random.seed(123)
    X = np.random.rand(100, 50)
    D = euclidean_distances(X)
    verbose = 1

    hub = Hubness(k=10, metric='precomputed',
                  store_k_occurrence=True,
                  store_k_neighbors=True,
                  )
    hub.fit(D)
    skew_d = hub.score(has_self_distances=has_self_distances)
    neigh_d = hub.k_neighbors
    occ_d = hub.k_occurrence

    hub = Hubness(k=10, metric='euclidean',
                  store_k_neighbors=True,
                  store_k_occurrence=True,
                  verbose=verbose)
    hub.fit(X)
    skew_v = hub.score(X if not has_self_distances else None)
    neigh_v = hub.k_neighbors
    occ_v = hub.k_occurrence

    np.testing.assert_allclose(skew_d, skew_v, atol=1e-7)
    np.testing.assert_array_equal(neigh_d, neigh_v)
    np.testing.assert_array_equal(occ_d, occ_v) 
開發者ID:VarIr,項目名稱:scikit-hubness,代碼行數:31,代碼來源:test_estimation.py

示例15: fit_transform

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def fit_transform(self, X, y=None, init=None):
        """
        Fit the data from X, and returns the embedded coordinates

        Parameters
        ----------
        X : array, shape=[n_samples, n_features], or [n_samples, n_samples] \
                if dissimilarity='precomputed'
            Input data.

        init : {None or ndarray, shape (n_samples,)}, optional
            If None, randomly chooses the initial configuration
            if ndarray, initialize the SMACOF algorithm with this array.

        """
        X = check_array(X)
        if X.shape[0] == X.shape[1] and self.dissimilarity != "precomputed":
            warnings.warn("The MDS API has changed. ``fit`` now constructs an"
                          " dissimilarity matrix from data. To use a custom "
                          "dissimilarity matrix, set "
                          "``dissimilarity=precomputed``.")

        if self.dissimilarity == "precomputed":
            self.dissimilarity_matrix_ = X
        elif self.dissimilarity == "euclidean":
            self.dissimilarity_matrix_ = euclidean_distances(X)
        else:
            raise ValueError("Proximity must be 'precomputed' or 'euclidean'."
                             " Got %s instead" % str(self.dissimilarity))

        self.embedding_, self.stress_, self.n_iter_ = _smacof_w(
            self.dissimilarity_matrix_, self.n_uq, self.uq_weight, metric=self.metric,
            n_components=self.n_components, init=init, n_init=self.n_init,
            n_jobs=self.n_jobs, max_iter=self.max_iter, verbose=self.verbose,
            eps=self.eps, random_state=self.random_state,
            return_n_iter=True)

        return self.embedding_ 
開發者ID:scikit-multilearn,項目名稱:scikit-multilearn,代碼行數:40,代碼來源:_mdsw.py


注:本文中的sklearn.metrics.euclidean_distances方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。