本文整理匯總了Python中sklearn.metrics.euclidean_distances方法的典型用法代碼示例。如果您正苦於以下問題:Python metrics.euclidean_distances方法的具體用法?Python metrics.euclidean_distances怎麽用?Python metrics.euclidean_distances使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.metrics
的用法示例。
在下文中一共展示了metrics.euclidean_distances方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_equal_similarities_and_preferences
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def test_equal_similarities_and_preferences():
# Unequal distances
X = np.array([[0, 0], [1, 1], [-2, -2]])
S = -euclidean_distances(X, squared=True)
assert not _equal_similarities_and_preferences(S, np.array(0))
assert not _equal_similarities_and_preferences(S, np.array([0, 0]))
assert not _equal_similarities_and_preferences(S, np.array([0, 1]))
# Equal distances
X = np.array([[0, 0], [1, 1]])
S = -euclidean_distances(X, squared=True)
# Different preferences
assert not _equal_similarities_and_preferences(S, np.array([0, 1]))
# Same preferences
assert _equal_similarities_and_preferences(S, np.array([0, 0]))
assert _equal_similarities_and_preferences(S, np.array(0))
示例2: predict
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def predict(self, X):
""" A reference implementation of a prediction for a classifier.
Parameters
----------
X : array-like, shape (n_samples, n_features)
The input samples.
Returns
-------
y : ndarray, shape (n_samples,)
The label for each sample is the label of the closest sample
seen during fit.
"""
# Check is fit had been called
check_is_fitted(self, ['X_', 'y_'])
# Input validation
X = check_array(X)
closest = np.argmin(euclidean_distances(X, self.X_), axis=1)
return self.y_[closest]
示例3: fit_transform
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def fit_transform(self, X, y=None, init=None):
"""
Fit the data from X, and returns the embedded coordinates
Parameters
----------
X : array, shape=[n_samples, n_features], or [n_samples, n_samples] \
if dissimilarity='precomputed'
Input data.
init : {None or ndarray, shape (n_samples,)}, optional
If None, randomly chooses the initial configuration
if ndarray, initialize the SMACOF algorithm with this array.
"""
X = check_array(X)
if X.shape[0] == X.shape[1] and self.dissimilarity != "precomputed":
warnings.warn("The MDS API has changed. ``fit`` now constructs an"
" dissimilarity matrix from data. To use a custom "
"dissimilarity matrix, set "
"``dissimilarity=precomputed``.")
if self.dissimilarity == "precomputed":
self.dissimilarity_matrix_ = X
elif self.dissimilarity == "euclidean":
self.dissimilarity_matrix_ = euclidean_distances(X)
else:
raise ValueError("Proximity must be 'precomputed' or 'euclidean'."
" Got %s instead" % str(self.dissimilarity))
self.embedding_, self.stress_, self.n_iter_ = smacof_p(
self.dissimilarity_matrix_, self.n_uq, metric=self.metric,
n_components=self.n_components, init=init, n_init=self.n_init,
n_jobs=self.n_jobs, max_iter=self.max_iter, verbose=self.verbose,
eps=self.eps, random_state=self.random_state,
return_n_iter=True)
return self.embedding_
示例4: _optimize
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def _optimize(self, X, y):
nb_prototypes = self.c_w_.size
n_data, n_dim = X.shape
prototypes = self.w_.reshape(nb_prototypes, n_dim)
for i in range(n_data):
xi = X[i]
c_xi = int(y[i])
best_euclid_corr = np.inf
best_euclid_incorr = np.inf
# find nearest correct and nearest wrong prototype
for j in range(prototypes.shape[0]):
if self.c_w_[j] == c_xi:
eucl_dis = euclidean_distances(xi.reshape(1, xi.size),
prototypes[j]
.reshape(1, prototypes[j]
.size))
if eucl_dis < best_euclid_corr:
best_euclid_corr = eucl_dis
corr_index = j
else:
eucl_dis = euclidean_distances(xi.reshape(1, xi.size),
prototypes[j]
.reshape(1, prototypes[j]
.size))
if eucl_dis < best_euclid_incorr:
best_euclid_incorr = eucl_dis
incorr_index = j
# Update nearest wrong prototype and nearest correct prototype
# if correct prototype isn't the nearest
if best_euclid_incorr < best_euclid_corr:
self._update_prototype(j=corr_index, c_xi=c_xi, xi=xi,
prototypes=prototypes)
self._update_prototype(j=incorr_index, c_xi=c_xi, xi=xi,
prototypes=prototypes)
開發者ID:scikit-multiflow,項目名稱:scikit-multiflow,代碼行數:40,代碼來源:robust_soft_learning_vector_quantization.py
示例5: test_random_projection_embedding_quality
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def test_random_projection_embedding_quality():
data, _ = make_sparse_random_data(8, 5000, 15000)
eps = 0.2
original_distances = euclidean_distances(data, squared=True)
original_distances = original_distances.ravel()
non_identical = original_distances != 0.0
# remove 0 distances to avoid division by 0
original_distances = original_distances[non_identical]
for RandomProjection in all_RandomProjection:
rp = RandomProjection(n_components='auto', eps=eps, random_state=0)
projected = rp.fit_transform(data)
projected_distances = euclidean_distances(projected, squared=True)
projected_distances = projected_distances.ravel()
# remove 0 distances to avoid division by 0
projected_distances = projected_distances[non_identical]
distances_ratio = projected_distances / original_distances
# check that the automatically tuned values for the density respect the
# contract for eps: pairwise distances are preserved according to the
# Johnson-Lindenstrauss lemma
assert_less(distances_ratio.max(), 1 + eps)
assert_less(1 - eps, distances_ratio.min())
示例6: test_affinity_propagation
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def test_affinity_propagation():
# Affinity Propagation algorithm
# Compute similarities
S = -euclidean_distances(X, squared=True)
preference = np.median(S) * 10
# Compute Affinity Propagation
cluster_centers_indices, labels = affinity_propagation(
S, preference=preference)
n_clusters_ = len(cluster_centers_indices)
assert_equal(n_clusters, n_clusters_)
af = AffinityPropagation(preference=preference, affinity="precomputed")
labels_precomputed = af.fit(S).labels_
af = AffinityPropagation(preference=preference, verbose=True)
labels = af.fit(X).labels_
assert_array_equal(labels, labels_precomputed)
cluster_centers_indices = af.cluster_centers_indices_
n_clusters_ = len(cluster_centers_indices)
assert_equal(np.unique(labels).size, n_clusters_)
assert_equal(n_clusters, n_clusters_)
# Test also with no copy
_, labels_no_copy = affinity_propagation(S, preference=preference,
copy=False)
assert_array_equal(labels, labels_no_copy)
# Test input validation
assert_raises(ValueError, affinity_propagation, S[:, :-1])
assert_raises(ValueError, affinity_propagation, S, damping=0)
af = AffinityPropagation(affinity="unknown")
assert_raises(ValueError, af.fit, X)
示例7: test_affinity_propagation_equal_mutual_similarities
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def test_affinity_propagation_equal_mutual_similarities():
X = np.array([[-1, 1], [1, -1]])
S = -euclidean_distances(X, squared=True)
# setting preference > similarity
cluster_center_indices, labels = assert_warns_message(
UserWarning, "mutually equal", affinity_propagation, S, preference=0)
# expect every sample to become an exemplar
assert_array_equal([0, 1], cluster_center_indices)
assert_array_equal([0, 1], labels)
# setting preference < similarity
cluster_center_indices, labels = assert_warns_message(
UserWarning, "mutually equal", affinity_propagation, S, preference=-10)
# expect one cluster, with arbitrary (first) sample as exemplar
assert_array_equal([0], cluster_center_indices)
assert_array_equal([0, 0], labels)
# setting different preferences
cluster_center_indices, labels = assert_no_warnings(
affinity_propagation, S, preference=[-20, -10])
# expect one cluster, with highest-preference sample as exemplar
assert_array_equal([1], cluster_center_indices)
assert_array_equal([0, 0], labels)
示例8: predict
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def predict(self, x):
"""
Predict clusters for one sample
Parameters
----------
x: ndarray
Samples to predict
Returns
-------
label: int
Predicted cluster
"""
# Find the closest cluster to samples
# To do it, project x to appropriate subspace, find distance to mean value and norm by variance
min_score = None
closest = None
for i in range(self.clusters):
projection = x[:, self.features_[i]]
norm = euclidean_distances(projection, self.means_[i])
score = norm / self.vars_[i]
if min_score is None or score < min_score:
min_score = score
closest = i
return closest
示例9: wmdistance
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def wmdistance(sent1_embs, sent2_embs):
wmd = 0.0
for _,x in sent1_embs:
min_dist = sys.float_info.max
for _,y in sent2_embs:
x = x.reshape(1, -1)
y = y.reshape(1, -1)
distance = euclidean_distances(x,y)
if distance < min_dist:
min_dist = distance
wmd += min_dist
return - float(wmd) / (len(sent1_embs) + len(sent2_embs))
# Note that this breaks the symmetry and is not a distance anymore:
# To overcome this, we compute the average of the score in both side: (weigthedWMD(a,b) + weightedWMD(b,a))/2
示例10: weighted_wmdistance
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def weighted_wmdistance(sent1_embs, sent2_embs, idfs, mean):
wmd = 0.0
for token1, x in sent1_embs:
min_dist = sys.float_info.max
weight = idfs[token1] if token1 in idfs else mean
for _, y in sent2_embs:
print(x, x.shape())
print(y, y.shape())
score = weight * euclidean_distances(x,y)
exit(0)
if score < min_dist:
min_dist = score
wmd += min_dist
return - float(wmd) / (len(sent1_embs) + len(sent2_embs))
示例11: test_shuffle_equal
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def test_shuffle_equal(verbose):
# for this data set there shouldn't be any equal distances,
# and shuffle should make no difference
X, _ = make_classification(random_state=12354)
dist = euclidean_distances(X)
skew_shuffle, skew_no_shuffle = \
[Hubness(metric='precomputed', shuffle_equal=v, verbose=verbose)
.fit(dist).score() for v in [True, False]]
assert skew_no_shuffle == skew_shuffle
示例12: test_sparse_equal_dense
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def test_sparse_equal_dense(verbose, shuffle_equal):
X, _ = make_classification()
dist_dense = euclidean_distances(X)
dist_sparse = csr_matrix(dist_dense)
hub = Hubness(metric='precomputed',
shuffle_equal=shuffle_equal,
verbose=verbose)
hub.fit(dist_dense)
skew_dense = hub.score(has_self_distances=True)
hub.fit(dist_sparse)
skew_sparse = hub.score(has_self_distances=True)
np.testing.assert_almost_equal(skew_dense, skew_sparse)
示例13: test_sparse_equal_dense_if_variable_hits_per_row
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def test_sparse_equal_dense_if_variable_hits_per_row(shuffle_equal):
X, _ = make_classification(random_state=123)
dist = euclidean_distances(X)
dist[0, 1:3] = 999
dist[1:3, 0] = 999
dist[1, 1:5] = 999
dist[1:5, 1] = 999
sparse = dist.copy()
sparse[0, 1:3] = 0
sparse[1:3, 0] = 0
sparse[1, 1:5] = 0
sparse[1:5, 1] = 0
sparse = csr_matrix(sparse)
hub = Hubness(metric='precomputed',
shuffle_equal=shuffle_equal,
random_state=123)
hub.fit(dist)
skew_dense = hub.score(has_self_distances=True)
hub = Hubness(metric='precomputed',
shuffle_equal=shuffle_equal,
random_state=123)
hub.fit(sparse)
skew_sparse = hub.score(has_self_distances=True)
np.testing.assert_almost_equal(skew_dense, skew_sparse, decimal=2)
示例14: test_hubness_against_distance
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def test_hubness_against_distance(has_self_distances):
"""Test hubness class against distance-based methods."""
np.random.seed(123)
X = np.random.rand(100, 50)
D = euclidean_distances(X)
verbose = 1
hub = Hubness(k=10, metric='precomputed',
store_k_occurrence=True,
store_k_neighbors=True,
)
hub.fit(D)
skew_d = hub.score(has_self_distances=has_self_distances)
neigh_d = hub.k_neighbors
occ_d = hub.k_occurrence
hub = Hubness(k=10, metric='euclidean',
store_k_neighbors=True,
store_k_occurrence=True,
verbose=verbose)
hub.fit(X)
skew_v = hub.score(X if not has_self_distances else None)
neigh_v = hub.k_neighbors
occ_v = hub.k_occurrence
np.testing.assert_allclose(skew_d, skew_v, atol=1e-7)
np.testing.assert_array_equal(neigh_d, neigh_v)
np.testing.assert_array_equal(occ_d, occ_v)
示例15: fit_transform
# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import euclidean_distances [as 別名]
def fit_transform(self, X, y=None, init=None):
"""
Fit the data from X, and returns the embedded coordinates
Parameters
----------
X : array, shape=[n_samples, n_features], or [n_samples, n_samples] \
if dissimilarity='precomputed'
Input data.
init : {None or ndarray, shape (n_samples,)}, optional
If None, randomly chooses the initial configuration
if ndarray, initialize the SMACOF algorithm with this array.
"""
X = check_array(X)
if X.shape[0] == X.shape[1] and self.dissimilarity != "precomputed":
warnings.warn("The MDS API has changed. ``fit`` now constructs an"
" dissimilarity matrix from data. To use a custom "
"dissimilarity matrix, set "
"``dissimilarity=precomputed``.")
if self.dissimilarity == "precomputed":
self.dissimilarity_matrix_ = X
elif self.dissimilarity == "euclidean":
self.dissimilarity_matrix_ = euclidean_distances(X)
else:
raise ValueError("Proximity must be 'precomputed' or 'euclidean'."
" Got %s instead" % str(self.dissimilarity))
self.embedding_, self.stress_, self.n_iter_ = _smacof_w(
self.dissimilarity_matrix_, self.n_uq, self.uq_weight, metric=self.metric,
n_components=self.n_components, init=init, n_init=self.n_init,
n_jobs=self.n_jobs, max_iter=self.max_iter, verbose=self.verbose,
eps=self.eps, random_state=self.random_state,
return_n_iter=True)
return self.embedding_