當前位置: 首頁>>代碼示例>>Python>>正文


Python metrics.cohen_kappa_score方法代碼示例

本文整理匯總了Python中sklearn.metrics.cohen_kappa_score方法的典型用法代碼示例。如果您正苦於以下問題:Python metrics.cohen_kappa_score方法的具體用法?Python metrics.cohen_kappa_score怎麽用?Python metrics.cohen_kappa_score使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.metrics的用法示例。


在下文中一共展示了metrics.cohen_kappa_score方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: inference_validation

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import cohen_kappa_score [as 別名]
def inference_validation(self,test_X,test_y,model_save_dest,n_class=5,folds=5):
		print(test_X.shape,test_y.shape)
		pred = np.zeros(test_X.shape[0])
		for k in range(1,folds + 1):
			print(f'running inference on fold: {k}')
			model = keras.models.load_model(model_save_dest[k])
			pred = pred + model.predict(test_X)[:,0]
			pred = pred
			print(pred.shape)
			print(pred)
		pred = pred/float(folds)
		pred_class = np.round(pred)
		pred_class = np.array(pred_class,dtype=int)
		pred_class = list(map(lambda x:4 if x > 4 else x,pred_class))
		pred_class = list(map(lambda x:0 if x < 0 else x,pred_class))
		act_class = test_y 
		accuracy = np.sum([pred_class == act_class])*1.0/len(test_X)
		kappa = cohen_kappa_score(pred_class,act_class,weights='quadratic')
		return pred_class,accuracy,kappa 
開發者ID:PacktPublishing,項目名稱:Intelligent-Projects-Using-Python,代碼行數:21,代碼來源:TransferLearning_reg.py

示例2: class_wise_kappa

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import cohen_kappa_score [as 別名]
def class_wise_kappa(true, pred, n_classes=None, ignore_zero=True):
    from sklearn.metrics import cohen_kappa_score
    if n_classes is None:
        classes = np.unique(true)
    else:
        classes = np.arange(max(2, n_classes))
    # Ignore background class?
    if ignore_zero:
        classes = classes[np.where(classes != 0)]

    # Calculate kappa for all targets
    kappa_scores = np.empty(shape=classes.shape, dtype=np.float32)
    kappa_scores.fill(np.nan)
    for idx, _class in enumerate(classes):
        s1 = true == _class
        s2 = pred == _class

        if np.any(s1) or np.any(s2):
            kappa_scores[idx] = cohen_kappa_score(s1, s2)
    return kappa_scores 
開發者ID:perslev,項目名稱:MultiPlanarUNet,代碼行數:22,代碼來源:metrics.py

示例3: toy_cohens_kappa

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import cohen_kappa_score [as 別名]
def toy_cohens_kappa():
    # rater1 = [1, 1, 1, 0]
    # rater2 = [1, 1, 0, 0]
    # rater3 = [0, 1, 1]
    rater1 = ['s', 's', 's', 'g', 'u']
    rater2 = ['s', 's', 'g', 'g', 's']

    taskdata = [[0, str(i), str(rater1[i])] for i in range(0, len(rater1))] + [
        [1, str(i), str(rater2[i])] for i in range(0, len(rater2))] # + [
                   # [2, str(i), str(rater3[i])] for i in range(0, len(rater3))]
    print(taskdata)
    ratingtask = agreement.AnnotationTask(data=taskdata)
    print("kappa " + str(ratingtask.kappa()))
    print("fleiss " + str(ratingtask.multi_kappa()))
    print("alpha " + str(ratingtask.alpha()))
    print("scotts " + str(ratingtask.pi()))

    print("sklearn kappa " + str(cohen_kappa_score(rater1, rater2))) 
開發者ID:melqkiades,項目名稱:yelp,代碼行數:20,代碼來源:labeled_reviews_comparator.py

示例4: predict

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import cohen_kappa_score [as 別名]
def predict(self):
        """
        Predicts the model output, and computes precision, recall, and F1 score.

        INPUT
            model: Model trained in Keras

        OUTPUT
            Precision, Recall, and F1 score
        """
        predictions = self.model.predict(self.X_test)
        predictions = np.argmax(predictions, axis=1)

        # predictions[predictions >=1] = 1 # Remove when non binary classifier

        self.y_test = np.argmax(self.y_test, axis=1)

        precision = precision_score(self.y_test, predictions, average="micro")
        recall = recall_score(self.y_test, predictions, average="micro")
        f1 = f1_score(self.y_test, predictions, average="micro")
        cohen_kappa = cohen_kappa_score(self.y_test, predictions)
        quad_kappa = kappa(self.y_test, predictions, weights='quadratic')
        return precision, recall, f1, cohen_kappa, quad_kappa 
開發者ID:llSourcell,項目名稱:AI_in_Medicine_Clinical_Imaging_Classification,代碼行數:25,代碼來源:cnn_class.py

示例5: evaluate

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import cohen_kappa_score [as 別名]
def evaluate(source, source_batch):
    # Turn on evaluation mode which disables dropout.
    model.eval()
    total_loss = 0
    y_true = []  # true labels
    y_pred = []  # predicted labels
    hidden = model.init_hidden(args.bsz)
    for i in range(len(source_batch)):

        data, targets = get_batch(source, source_batch, i)
        output, hidden = model(data, hidden)
        total_loss += len(targets) * criterion(output[-1], targets).data
        _, predicted = torch.max(output[-1], 1)
        y_true.extend(targets.tolist())
        y_pred.extend(predicted.tolist())
        hidden = repackage_hidden(hidden)
    val_loss = total_loss.item() / np.size(source_batch)
    # Make report for the classfier
    report = classification_report(y_true, y_pred, target_names=classes)
    kappa = cohen_kappa_score(y_true, y_pred)
    return val_loss, kappa, report

# Loop over epochs 
開發者ID:Jackmzw,項目名稱:Price_Prediction_LOB,代碼行數:25,代碼來源:rnn.py

示例6: evaluate

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import cohen_kappa_score [as 別名]
def evaluate(source, source_batch):
    # Turn on evaluation mode which disables dropout.
    model.eval()
    total_loss = 0
    y_true = []  # true labels
    y_pred = []  # predicted labels
    for i in range(len(source_batch)):
        data, targets = get_batch(source, source_batch, i)
        outputs = model(data)
        total_loss += len(targets) * criterion(outputs, targets).data
        _, predicted = torch.max(outputs, 1)
        y_true.extend(targets.tolist())
        y_pred.extend(predicted.tolist())
    val_loss = total_loss.item() / np.size(source_batch)
    # Make report for the classfier
    report = classification_report(y_true, y_pred, target_names=classes)
    kappa = cohen_kappa_score(y_true, y_pred)
    return val_loss, kappa, report

# Loop over epochs 
開發者ID:Jackmzw,項目名稱:Price_Prediction_LOB,代碼行數:22,代碼來源:cnn.py

示例7: quadratic_weighted_kappa

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import cohen_kappa_score [as 別名]
def quadratic_weighted_kappa(y_pred, y_true):
    if torch.is_tensor(y_pred):
        y_pred = y_pred.data.cpu().numpy()
    if torch.is_tensor(y_true):
        y_true = y_true.data.cpu().numpy()
    if y_pred.shape[1] == 1:
        y_pred = y_pred[:, 0]
    else:
        y_pred = np.argmax(y_pred, axis=1)
    return metrics.cohen_kappa_score(y_pred, y_true, weights='quadratic') 
開發者ID:4uiiurz1,項目名稱:kaggle-aptos2019-blindness-detection,代碼行數:12,代碼來源:metrics.py

示例8: kappa_score

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import cohen_kappa_score [as 別名]
def kappa_score(self):
        return metrics.cohen_kappa_score(self.conditions, self.predictions) 
開發者ID:uber,項目名稱:ludwig,代碼行數:4,代碼來源:metrics_utils.py

示例9: test_cohen_kappa

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import cohen_kappa_score [as 別名]
def test_cohen_kappa():
    # These label vectors reproduce the contingency matrix from Artstein and
    # Poesio (2008), Table 1: np.array([[20, 20], [10, 50]]).
    y1 = np.array([0] * 40 + [1] * 60)
    y2 = np.array([0] * 20 + [1] * 20 + [0] * 10 + [1] * 50)
    kappa = cohen_kappa_score(y1, y2)
    assert_almost_equal(kappa, .348, decimal=3)
    assert_equal(kappa, cohen_kappa_score(y2, y1))

    # Add spurious labels and ignore them.
    y1 = np.append(y1, [2] * 4)
    y2 = np.append(y2, [2] * 4)
    assert_equal(cohen_kappa_score(y1, y2, labels=[0, 1]), kappa)

    assert_almost_equal(cohen_kappa_score(y1, y1), 1.)

    # Multiclass example: Artstein and Poesio, Table 4.
    y1 = np.array([0] * 46 + [1] * 44 + [2] * 10)
    y2 = np.array([0] * 52 + [1] * 32 + [2] * 16)
    assert_almost_equal(cohen_kappa_score(y1, y2), .8013, decimal=4)

    # Weighting example: none, linear, quadratic.
    y1 = np.array([0] * 46 + [1] * 44 + [2] * 10)
    y2 = np.array([0] * 50 + [1] * 40 + [2] * 10)
    assert_almost_equal(cohen_kappa_score(y1, y2), .9315, decimal=4)
    assert_almost_equal(cohen_kappa_score(y1, y2,
                        weights="linear"), 0.9412, decimal=4)
    assert_almost_equal(cohen_kappa_score(y1, y2,
                        weights="quadratic"), 0.9541, decimal=4) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:31,代碼來源:test_classification.py

示例10: inference_validation

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import cohen_kappa_score [as 別名]
def inference_validation(self,test_X,test_y,model_save_dest,n_class=5,folds=5):
		pred = np.zeros((len(test_X),n_class))

		for k in range(1,folds + 1):
			model = keras.models.load_model(model_save_dest[k])
			pred = pred + model.predict(test_X)
		pred = pred/(1.0*folds) 
		pred_class = np.argmax(pred,axis=1) 
		act_class = np.argmax(test_y,axis=1)
		accuracy = np.sum([pred_class == act_class])*1.0/len(test_X)
		kappa = cohen_kappa_score(pred_class,act_class,weights='quadratic')
		return pred_class,accuracy,kappa 
開發者ID:PacktPublishing,項目名稱:Intelligent-Projects-Using-Python,代碼行數:14,代碼來源:TransferLearning.py

示例11: main

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import cohen_kappa_score [as 別名]
def main(self):
        start_time = time.time()
        print('Data Processing..')
        self.num_class = len(self.class_folders)
        model_to_store_path,class_dict = self.train_model(self.train_dir,self.val_dir,n_fold=self.folds,batch_size=self.batch_size,
                                                        epochs=self.epochs,dim=self.dim,lr=self.lr,model=self.model)
        print("Model saved to dest:",model_to_store_path)

        # Validatione evaluate results
        
        folder_path = Path(f'{self.val_dir}')
        val_results_df = self.inference(model_to_store_path,folder_path,class_dict,self.dim)
        val_results_path = f'{self.outdir}/val_results.csv'
        val_results_df.to_csv(val_results_path,index=False)
        print(f'Validation results saved at : {val_results_path}') 
        pred_class_index = np.array(val_results_df['pred_class_index'].values)
        actual_class_index = np.array(val_results_df['actual_class_index'].values)
        print(pred_class_index)
        print(actual_class_index)
        accuracy = np.mean(actual_class_index == pred_class_index)
        kappa = cohen_kappa_score(pred_class_index,actual_class_index,weights='quadratic')
        #print("-----------------------------------------------------")
        print(f'Validation Accuracy: {accuracy}')
        print(f'Validation Quadratic Kappa Score: {kappa}')
        #print("-----------------------------------------------------")
        #print("Processing Time",time.time() - start_time,' secs') 
開發者ID:PacktPublishing,項目名稱:Intelligent-Projects-Using-Python,代碼行數:28,代碼來源:TransferLearning_ffd.py

示例12: reports

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import cohen_kappa_score [as 別名]
def reports(y_pred, y_test):
    classification = classification_report(y_test, y_pred)
    oa = accuracy_score(y_test, y_pred)
    confusion = confusion_matrix(y_test, y_pred)
    each_acc, aa = AA_andEachClassAccuracy(confusion)
    kappa = cohen_kappa_score(y_test, y_pred)
    return classification, confusion, np.array([oa, aa, kappa] + list(each_acc)) * 100 
開發者ID:mhaut,項目名稱:hyperspectral_deeplearning_review,代碼行數:9,代碼來源:mymetrics.py

示例13: calculate_metrics

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import cohen_kappa_score [as 別名]
def calculate_metrics(val_results_dict, y_pred, y_val, suffix=""): 
    tmp_kappa_list = []
    tmp_accur_list = [] 
    tmp_f1_list = [] 
    tmp_cm_list = []
    y_val = utils.to_categorical(y_val)[:,-1]
    for each_threshold in np.linspace(0.1, 0.9, 17): 
        tmp_pred = [1 if _ >= each_threshold else 0 for _ in y_pred]
        tmp_kappa_list.append(cohen_kappa_score(tmp_pred, y_val))
        tmp_accur_list.append(accuracy_score(tmp_pred, y_val)) 
        tmp_f1_list.append(f1_score(tmp_pred, y_val))
        tmp_cm_list.append(competitionMetric(tmp_pred, y_val))
    auroc = round(roc_auc_score(y_val, y_pred), 3)
    kappa = round(np.max(tmp_kappa_list), 3)
    accur = round(np.max(tmp_accur_list), 3) 
    cm = round(np.max(tmp_cm_list), 3)
    f1 = round(np.max(tmp_f1_list), 3) 
    val_results_dict["auc{}".format(suffix)].append(auroc)
    val_results_dict["kap{}".format(suffix)].append(kappa)
    val_results_dict["acc{}".format(suffix)].append(accur) 
    val_results_dict["f1{}".format(suffix)].append(f1) 
    val_results_dict["cm{}".format(suffix)].append(cm)
    kappa_threshold = np.linspace(0.1,0.9,17)[tmp_kappa_list.index(np.max(tmp_kappa_list))]
    accur_threshold = np.linspace(0.1,0.9,17)[tmp_accur_list.index(np.max(tmp_accur_list))]
    f1_threshold = np.linspace(0.1,0.9,17)[tmp_f1_list.index(np.max(tmp_f1_list))]
    cm_threshold = np.linspace(0.1,0.9,17)[tmp_cm_list.index(np.max(tmp_cm_list))]
    val_results_dict["threshold_kap{}".format(suffix)].append(round(kappa_threshold, 2))
    val_results_dict["threshold_acc{}".format(suffix)].append(round(accur_threshold, 2))
    val_results_dict["threshold_f1{}".format(suffix)].append(round(f1_threshold, 2))
    val_results_dict["threshold_cm{}".format(suffix)].append(round(cm_threshold, 2))
    return val_results_dict 
開發者ID:i-pan,項目名稱:kaggle-rsna18,代碼行數:33,代碼來源:TrainClassifierEnsemble.py

示例14: _kappa_score

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import cohen_kappa_score [as 別名]
def _kappa_score(self):
        png_file = self.scalars(
            {'kappa_score': cohen_kappa_score(self.targets, self.predicts, weights='quadratic')}, 'kappa_score'
        )

        if png_file:
            self.update_sheet('kappa_score', {'raw': png_file, 'processor': 'upload_image'}) 
開發者ID:minetorch,項目名稱:minetorch,代碼行數:9,代碼來源:metrics.py

示例15: print_metrics_regression

# 需要導入模塊: from sklearn import metrics [as 別名]
# 或者: from sklearn.metrics import cohen_kappa_score [as 別名]
def print_metrics_regression(y_true, predictions, verbose=1):
    predictions = np.array(predictions)
    predictions = np.maximum(predictions, 0).flatten()
    y_true = np.array(y_true)

    y_true_bins = [get_bin_custom(x, CustomBins.nbins) for x in y_true]
    prediction_bins = [get_bin_custom(x, CustomBins.nbins) for x in predictions]
    cf = metrics.confusion_matrix(y_true_bins, prediction_bins)
    if verbose:
        print("Custom bins confusion matrix:")
        print(cf)

    kappa = metrics.cohen_kappa_score(y_true_bins, prediction_bins,
                                      weights='linear')
    mad = metrics.mean_absolute_error(y_true, predictions)
    mse = metrics.mean_squared_error(y_true, predictions)
    mape = mean_absolute_percentage_error(y_true, predictions)

    if verbose:
        print("Mean absolute deviation (MAD) = {}".format(mad))
        print("Mean squared error (MSE) = {}".format(mse))
        print("Mean absolute percentage error (MAPE) = {}".format(mape))
        print("Cohen kappa score = {}".format(kappa))

    return {"mad": mad,
            "mse": mse,
            "mape": mape,
            "kappa": kappa} 
開發者ID:YerevaNN,項目名稱:mimic3-benchmarks,代碼行數:30,代碼來源:metrics.py


注:本文中的sklearn.metrics.cohen_kappa_score方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。