本文整理匯總了Python中sklearn.metrics.cluster.normalized_mutual_info_score方法的典型用法代碼示例。如果您正苦於以下問題:Python cluster.normalized_mutual_info_score方法的具體用法?Python cluster.normalized_mutual_info_score怎麽用?Python cluster.normalized_mutual_info_score使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.metrics.cluster
的用法示例。
在下文中一共展示了cluster.normalized_mutual_info_score方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_perfect_matches
# 需要導入模塊: from sklearn.metrics import cluster [as 別名]
# 或者: from sklearn.metrics.cluster import normalized_mutual_info_score [as 別名]
def test_perfect_matches():
for score_func in score_funcs:
assert_equal(score_func([], []), 1.0)
assert_equal(score_func([0], [1]), 1.0)
assert_equal(score_func([0, 0, 0], [0, 0, 0]), 1.0)
assert_equal(score_func([0, 1, 0], [42, 7, 42]), 1.0)
assert_equal(score_func([0., 1., 0.], [42., 7., 42.]), 1.0)
assert_equal(score_func([0., 1., 2.], [42., 7., 2.]), 1.0)
assert_equal(score_func([0, 1, 2], [42, 7, 2]), 1.0)
score_funcs_with_changing_means = [
normalized_mutual_info_score,
adjusted_mutual_info_score,
]
means = {"min", "geometric", "arithmetic", "max"}
for score_func in score_funcs_with_changing_means:
for mean in means:
assert score_func([], [], mean) == 1.0
assert score_func([0], [1], mean) == 1.0
assert score_func([0, 0, 0], [0, 0, 0], mean) == 1.0
assert score_func([0, 1, 0], [42, 7, 42], mean) == 1.0
assert score_func([0., 1., 0.], [42., 7., 42.], mean) == 1.0
assert score_func([0., 1., 2.], [42., 7., 2.], mean) == 1.0
assert score_func([0, 1, 2], [42, 7, 2], mean) == 1.0
示例2: init_prob_kmeans
# 需要導入模塊: from sklearn.metrics import cluster [as 別名]
# 或者: from sklearn.metrics.cluster import normalized_mutual_info_score [as 別名]
def init_prob_kmeans(model, eval_loader, args):
torch.manual_seed(1)
model = model.to(device)
# cluster parameter initiate
model.eval()
targets = np.zeros(len(eval_loader.dataset))
feats = np.zeros((len(eval_loader.dataset), 512))
for _, (x, label, idx) in enumerate(eval_loader):
x = x.to(device)
feat = model(x)
idx = idx.data.cpu().numpy()
feats[idx, :] = feat.data.cpu().numpy()
targets[idx] = label.data.cpu().numpy()
pca = PCA(n_components=args.n_clusters)
feats = pca.fit_transform(feats)
kmeans = KMeans(n_clusters=args.n_clusters, n_init=20)
y_pred = kmeans.fit_predict(feats)
acc, nmi, ari = cluster_acc(targets, y_pred), nmi_score(targets, y_pred), ari_score(targets, y_pred)
print('Init acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
probs = feat2prob(torch.from_numpy(feats), torch.from_numpy(kmeans.cluster_centers_))
return acc, nmi, ari, kmeans.cluster_centers_, probs
示例3: test
# 需要導入模塊: from sklearn.metrics import cluster [as 別名]
# 或者: from sklearn.metrics.cluster import normalized_mutual_info_score [as 別名]
def test(model, test_loader, args):
model.eval()
acc_record = AverageMeter()
preds=np.array([])
targets=np.array([])
feats = np.zeros((len(test_loader.dataset), args.n_clusters))
probs= np.zeros((len(test_loader.dataset), args.n_clusters))
for batch_idx, (x, label, idx) in enumerate(tqdm(test_loader)):
x, label = x.to(device), label.to(device)
feat = model(x)
prob = feat2prob(feat, model.center)
_, pred = prob.max(1)
targets=np.append(targets, label.cpu().numpy())
preds=np.append(preds, pred.cpu().numpy())
idx = idx.data.cpu().numpy()
feats[idx, :] = feat.cpu().detach().numpy()
probs[idx, :] = prob.cpu().detach().numpy()
acc, nmi, ari = cluster_acc(targets.astype(int), preds.astype(int)), nmi_score(targets, preds), ari_score(targets, preds)
print('Test acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
probs = torch.from_numpy(probs)
return acc, nmi, ari, probs
示例4: init_prob_kmeans
# 需要導入模塊: from sklearn.metrics import cluster [as 別名]
# 或者: from sklearn.metrics.cluster import normalized_mutual_info_score [as 別名]
def init_prob_kmeans(model, eval_loader, args):
torch.manual_seed(1)
model = model.to(device)
# cluster parameter initiate
model.eval()
targets = np.zeros(len(eval_loader.dataset))
feats = np.zeros((len(eval_loader.dataset), 512))
for _, (x, label, idx) in enumerate(eval_loader):
x = x.to(device)
feat = model(x)
feat = feat.view(x.size(0), -1)
idx = idx.data.cpu().numpy()
feats[idx, :] = feat.data.cpu().numpy()
targets[idx] = label.data.cpu().numpy()
# evaluate clustering performance
pca = PCA(n_components=args.n_clusters)
feats = pca.fit_transform(feats)
kmeans = KMeans(n_clusters=args.n_clusters, n_init=20)
y_pred = kmeans.fit_predict(feats)
acc, nmi, ari = cluster_acc(targets, y_pred), nmi_score(targets, y_pred), ari_score(targets, y_pred)
print('Init acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
probs = feat2prob(torch.from_numpy(feats), torch.from_numpy(kmeans.cluster_centers_))
return acc, nmi, ari, kmeans.cluster_centers_, probs
示例5: test
# 需要導入模塊: from sklearn.metrics import cluster [as 別名]
# 或者: from sklearn.metrics.cluster import normalized_mutual_info_score [as 別名]
def test(model, test_loader, args, epoch=0):
model.eval()
acc_record = AverageMeter()
preds=np.array([])
targets=np.array([])
feats = np.zeros((len(test_loader.dataset), args.n_clusters))
probs = np.zeros((len(test_loader.dataset), args.n_clusters))
for batch_idx, (x, label, idx) in enumerate(tqdm(test_loader)):
x, label = x.to(device), label.to(device)
output = model(x)
prob = feat2prob(output, model.center)
_, pred = prob.max(1)
targets=np.append(targets, label.cpu().numpy())
preds=np.append(preds, pred.cpu().numpy())
idx = idx.data.cpu().numpy()
feats[idx, :] = output.cpu().detach().numpy()
probs[idx, :]= prob.cpu().detach().numpy()
acc, nmi, ari = cluster_acc(targets.astype(int), preds.astype(int)), nmi_score(targets, preds), ari_score(targets, preds)
print('Test acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
return acc, nmi, ari, torch.from_numpy(probs)
示例6: init_prob_kmeans
# 需要導入模塊: from sklearn.metrics import cluster [as 別名]
# 或者: from sklearn.metrics.cluster import normalized_mutual_info_score [as 別名]
def init_prob_kmeans(model, eval_loader, args):
torch.manual_seed(1)
model = model.to(device)
# cluster parameter initiate
model.eval()
targets = np.zeros(len(eval_loader.dataset))
feats = np.zeros((len(eval_loader.dataset), 512))
for _, (x, label, idx) in enumerate(eval_loader):
x = x.to(device)
feat = model(x)
idx = idx.data.cpu().numpy()
feats[idx, :] = feat.data.cpu().numpy()
targets[idx] = label.data.cpu().numpy()
# evaluate clustering performance
pca = PCA(n_components=args.n_clusters)
feats = pca.fit_transform(feats)
kmeans = KMeans(n_clusters=args.n_clusters, n_init=20)
y_pred = kmeans.fit_predict(feats)
acc, nmi, ari = cluster_acc(targets, y_pred), nmi_score(targets, y_pred), ari_score(targets, y_pred)
print('Init acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
probs = feat2prob(torch.from_numpy(feats), torch.from_numpy(kmeans.cluster_centers_))
return acc, nmi, ari, kmeans.cluster_centers_, probs
示例7: test
# 需要導入模塊: from sklearn.metrics import cluster [as 別名]
# 或者: from sklearn.metrics.cluster import normalized_mutual_info_score [as 別名]
def test(model, test_loader, args):
model.eval()
preds=np.array([])
targets=np.array([])
feats = np.zeros((len(test_loader.dataset), args.n_clusters))
probs= np.zeros((len(test_loader.dataset), args.n_clusters))
for batch_idx, (x, label, idx) in enumerate(tqdm(test_loader)):
x, label = x.to(device), label.to(device)
feat = model(x)
prob = feat2prob(feat, model.center)
_, pred = prob.max(1)
targets=np.append(targets, label.cpu().numpy())
preds=np.append(preds, pred.cpu().numpy())
idx = idx.data.cpu().numpy()
feats[idx, :] = feat.cpu().detach().numpy()
probs[idx, :] = prob.cpu().detach().numpy()
acc, nmi, ari = cluster_acc(targets.astype(int), preds.astype(int)), nmi_score(targets, preds), ari_score(targets, preds)
print('Test acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
probs = torch.from_numpy(probs)
return acc, nmi, ari, probs
示例8: test
# 需要導入模塊: from sklearn.metrics import cluster [as 別名]
# 或者: from sklearn.metrics.cluster import normalized_mutual_info_score [as 別名]
def test(model, test_loader, args, epoch='test'):
model.eval()
preds=np.array([])
targets=np.array([])
feats = np.zeros((len(test_loader.dataset), args.n_clusters))
probs= np.zeros((len(test_loader.dataset), args.n_clusters))
for batch_idx, (x, label, idx) in enumerate(tqdm(test_loader)):
x, label = x.to(device), label.to(device)
_, feat = model(x)
prob = feat2prob(feat, model.center)
_, pred = prob.max(1)
targets=np.append(targets, label.cpu().numpy())
preds=np.append(preds, pred.cpu().numpy())
idx = idx.data.cpu().numpy()
feats[idx, :] = feat.cpu().detach().numpy()
probs[idx, :] = prob.cpu().detach().numpy()
acc, nmi, ari = cluster_acc(targets.astype(int), preds.astype(int)), nmi_score(targets, preds), ari_score(targets, preds)
print('Test acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
probs = torch.from_numpy(probs)
return acc, nmi, ari, probs
示例9: init_prob_kmeans
# 需要導入模塊: from sklearn.metrics import cluster [as 別名]
# 或者: from sklearn.metrics.cluster import normalized_mutual_info_score [as 別名]
def init_prob_kmeans(model, eval_loader, args):
torch.manual_seed(1)
model = model.to(device)
# cluster parameter initiate
model.eval()
targets = np.zeros(len(eval_loader.dataset))
feats = np.zeros((len(eval_loader.dataset), 1024))
for _, (x, _, label, idx) in enumerate(eval_loader):
x = x.to(device)
_, feat = model(x)
feat = feat.view(x.size(0), -1)
idx = idx.data.cpu().numpy()
feats[idx, :] = feat.data.cpu().numpy()
targets[idx] = label.data.cpu().numpy()
# evaluate clustering performance
pca = PCA(n_components=args.n_clusters)
feats = pca.fit_transform(feats)
kmeans = KMeans(n_clusters=args.n_clusters, n_init=20)
y_pred = kmeans.fit_predict(feats)
acc, nmi, ari = cluster_acc(targets, y_pred), nmi_score(targets, y_pred), ari_score(targets, y_pred)
print('Init acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
probs = feat2prob(torch.from_numpy(feats), torch.from_numpy(kmeans.cluster_centers_))
return kmeans.cluster_centers_, probs
示例10: test
# 需要導入模塊: from sklearn.metrics import cluster [as 別名]
# 或者: from sklearn.metrics.cluster import normalized_mutual_info_score [as 別名]
def test(model, eval_loader, args):
model.eval()
targets = np.zeros(len(eval_loader.dataset))
y_pred = np.zeros(len(eval_loader.dataset))
probs= np.zeros((len(eval_loader.dataset), args.n_clusters))
for _, (x, _, label, idx) in enumerate(eval_loader):
x = x.to(device)
_, feat = model(x)
prob = feat2prob(feat, model.center)
# prob = F.softmax(logit, dim=1)
idx = idx.data.cpu().numpy()
y_pred[idx] = prob.data.cpu().detach().numpy().argmax(1)
targets[idx] = label.data.cpu().numpy()
probs[idx, :] = prob.cpu().detach().numpy()
# evaluate clustering performance
y_pred = y_pred.astype(np.int64)
acc, nmi, ari = cluster_acc(targets, y_pred), nmi_score(targets, y_pred), ari_score(targets, y_pred)
print('Test acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
probs = torch.from_numpy(probs)
return acc, nmi, ari, probs
示例11: test
# 需要導入模塊: from sklearn.metrics import cluster [as 別名]
# 或者: from sklearn.metrics.cluster import normalized_mutual_info_score [as 別名]
def test(model, eval_loader, args):
model.eval()
targets = np.zeros(len(eval_loader.dataset))
y_pred = np.zeros(len(eval_loader.dataset))
probs= np.zeros((len(eval_loader.dataset), args.n_clusters))
for _, (x, _, label, idx) in enumerate(eval_loader):
x = x.to(device)
_, feat = model(x)
prob = feat2prob(feat, model.center)
idx = idx.data.cpu().numpy()
y_pred[idx] = prob.data.cpu().detach().numpy().argmax(1)
targets[idx] = label.data.cpu().numpy()
probs[idx, :] = prob.cpu().detach().numpy()
# evaluate clustering performance
y_pred = y_pred.astype(np.int64)
acc, nmi, ari = cluster_acc(targets, y_pred), nmi_score(targets, y_pred), ari_score(targets, y_pred)
print('Test acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
probs = torch.from_numpy(probs)
return acc, nmi, ari, probs
示例12: test_nmi_faiss
# 需要導入模塊: from sklearn.metrics import cluster [as 別名]
# 或者: from sklearn.metrics.cluster import normalized_mutual_info_score [as 別名]
def test_nmi_faiss(embeddings, labels):
res = faiss.StandardGpuResources()
flat_config = faiss.GpuIndexFlatConfig()
flat_config.device = 0
unique_labels = np.unique(labels)
d = embeddings.shape[1]
kmeans = faiss.Clustering(d, unique_labels.size)
kmeans.verbose = True
kmeans.niter = 300
kmeans.nredo = 10
kmeans.seed = 0
index = faiss.GpuIndexFlatL2(res, d, flat_config)
kmeans.train(embeddings, index)
dists, pred_labels = index.search(embeddings, 1)
pred_labels = pred_labels.squeeze()
nmi = normalized_mutual_info_score(labels, pred_labels)
print("NMI: {}".format(nmi))
return nmi
示例13: evaluation
# 需要導入模塊: from sklearn.metrics import cluster [as 別名]
# 或者: from sklearn.metrics.cluster import normalized_mutual_info_score [as 別名]
def evaluation(X, Y, Kset):
num = X.shape[0]
classN = np.max(Y)+1
kmax = np.max(Kset)
recallK = np.zeros(len(Kset))
#compute NMI
kmeans = KMeans(n_clusters=classN).fit(X)
nmi = normalized_mutual_info_score(Y, kmeans.labels_, average_method='arithmetic')
#compute Recall@K
sim = X.dot(X.T)
minval = np.min(sim) - 1.
sim -= np.diag(np.diag(sim))
sim += np.diag(np.ones(num) * minval)
indices = np.argsort(-sim, axis=1)[:, : kmax]
YNN = Y[indices]
for i in range(0, len(Kset)):
pos = 0.
for j in range(0, num):
if Y[j] in YNN[j, :Kset[i]]:
pos += 1.
recallK[i] = pos/num
return nmi, recallK
示例14: test_future_warning
# 需要導入模塊: from sklearn.metrics import cluster [as 別名]
# 或者: from sklearn.metrics.cluster import normalized_mutual_info_score [as 別名]
def test_future_warning():
score_funcs_with_changing_means = [
normalized_mutual_info_score,
adjusted_mutual_info_score,
]
warning_msg = "The behavior of "
args = [0, 0, 0], [0, 0, 0]
for score_func in score_funcs_with_changing_means:
assert_warns_message(FutureWarning, warning_msg, score_func, *args)
示例15: test_exactly_zero_info_score
# 需要導入模塊: from sklearn.metrics import cluster [as 別名]
# 或者: from sklearn.metrics.cluster import normalized_mutual_info_score [as 別名]
def test_exactly_zero_info_score():
# Check numerical stability when information is exactly zero
for i in np.logspace(1, 4, 4).astype(np.int):
labels_a, labels_b = (np.ones(i, dtype=np.int),
np.arange(i, dtype=np.int))
assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0)
assert_equal(v_measure_score(labels_a, labels_b), 0.0)
assert_equal(adjusted_mutual_info_score(labels_a, labels_b), 0.0)
assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0)
for method in ["min", "geometric", "arithmetic", "max"]:
assert adjusted_mutual_info_score(labels_a, labels_b,
method) == 0.0
assert normalized_mutual_info_score(labels_a, labels_b,
method) == 0.0