當前位置: 首頁>>代碼示例>>Python>>正文


Python manifold.SpectralEmbedding方法代碼示例

本文整理匯總了Python中sklearn.manifold.SpectralEmbedding方法的典型用法代碼示例。如果您正苦於以下問題:Python manifold.SpectralEmbedding方法的具體用法?Python manifold.SpectralEmbedding怎麽用?Python manifold.SpectralEmbedding使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.manifold的用法示例。


在下文中一共展示了manifold.SpectralEmbedding方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: learn_manifold

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import SpectralEmbedding [as 別名]
def learn_manifold(manifold_type, feats, n_components=2):
    if manifold_type == 'tsne':
        feats_fitted = manifold.TSNE(n_components=n_components, random_state=0).fit_transform(feats)
    elif manifold_type == 'isomap':
        feats_fitted = manifold.Isomap(n_components=n_components).fit_transform(feats)
    elif manifold_type == 'mds':
        feats_fitted = manifold.MDS(n_components=n_components).fit_transform(feats)
    elif manifold_type == 'spectral':
        feats_fitted = manifold.SpectralEmbedding(n_components=n_components).fit_transform(feats)
    else:
        raise Exception('wrong maniford type!')

    # methods = ['standard', 'ltsa', 'hessian', 'modified']
    # feats_fitted = manifold.LocallyLinearEmbedding(n_components=n_components, method=methods[0]).fit_transform(pred)

    return feats_fitted 
開發者ID:CMU-CREATE-Lab,項目名稱:deep-smoke-machine,代碼行數:18,代碼來源:utils.py

示例2: apply_lens

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import SpectralEmbedding [as 別名]
def apply_lens(df, lens='pca', dist='euclidean', n_dim=2, **kwargs):
    """
    input: N x F dataframe of observations
    output: N x n_dim image of input data under lens function
    """
    if n_dim != 2:
        raise 'error: image of data set must be two-dimensional'
    if dist not in ['euclidean', 'correlation']:
        raise 'error: only euclidean and correlation distance metrics are supported'
    if lens == 'pca' and dist != 'euclidean':
        raise 'error: PCA requires the use of euclidean distance metric'

    if lens == 'pca':
        df_lens = pd.DataFrame(decomposition.PCA(n_components=n_dim, **kwargs).fit_transform(df), df.index)
    elif lens == 'mds':
        D = metrics.pairwise.pairwise_distances(df, metric=dist)
        df_lens = pd.DataFrame(manifold.MDS(n_components=n_dim, **kwargs).fit_transform(D), df.index)
    elif lens == 'neighbor':
        D = metrics.pairwise.pairwise_distances(df, metric=dist)
        df_lens = pd.DataFrame(manifold.SpectralEmbedding(n_components=n_dim, **kwargs).fit_transform(D), df.index)
    else:
        raise 'error: only PCA, MDS, neighborhood lenses are supported'
    
    return df_lens 
開發者ID:szairis,項目名稱:sakmapper,代碼行數:26,代碼來源:lens.py

示例3: classifiers

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import SpectralEmbedding [as 別名]
def classifiers(self):
        graph_builder = LabelCooccurrenceGraphBuilder(weighted=True, include_self_edges=False)

        param_dicts = {
            'GraphFactorization': dict(epoch=1),
            'GraRep': dict(Kstep=2),
            'HOPE': dict(),
            'LaplacianEigenmaps': dict(),
            'LINE': dict(epoch=1, order=1),
            'LLE': dict(),
        }

        if not (sys.version_info[0] == 2 or platform.architecture()[0] == '32bit'):
            for embedding in OpenNetworkEmbedder._EMBEDDINGS:
                if embedding == 'LLE':
                    dimension = 3
                else:
                    dimension = 4

                yield EmbeddingClassifier(
                        OpenNetworkEmbedder(copy(graph_builder), embedding, dimension,
                                        'add', True, param_dicts[embedding]),
                        LinearRegression(),
                        MLkNN(k=2)
                    )

        yield EmbeddingClassifier(
            SKLearnEmbedder(SpectralEmbedding(n_components=2)),
            LinearRegression(),
            MLkNN(k=2)
        )

        EmbeddingClassifier(
            CLEMS(metrics.accuracy_score, True),
            LinearRegression(),
            MLkNN(k=2),
            True
        ) 
開發者ID:scikit-multilearn,項目名稱:scikit-multilearn,代碼行數:40,代碼來源:test_classifier.py

示例4: test_objectmapper

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import SpectralEmbedding [as 別名]
def test_objectmapper(self):
        df = pdml.ModelFrame([])
        self.assertIs(df.manifold.LocallyLinearEmbedding,
                      manifold.LocallyLinearEmbedding)
        self.assertIs(df.manifold.Isomap, manifold.Isomap)
        self.assertIs(df.manifold.MDS, manifold.MDS)
        self.assertIs(df.manifold.SpectralEmbedding, manifold.SpectralEmbedding)
        self.assertIs(df.manifold.TSNE, manifold.TSNE) 
開發者ID:pandas-ml,項目名稱:pandas-ml,代碼行數:10,代碼來源:test_manifold.py

示例5: see_iso_map

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import SpectralEmbedding [as 別名]
def see_iso_map(bottlenecks, labels, suptitle=None):
    """

    :param bottlenecks:
    :param labels:
    :param suptitle: String to add as plot suptitles
    :return: Nothing, will just plot a scatter plot to show the distribution of our data after dimensionality reduction.
    """

    n_samples, n_features = bottlenecks.shape
    n_neighbors = 25
    n_components = 2
    start_index_outlier = np.where(labels == 1)[0][0]
    alpha_inlier = 0.25

    B_iso = manifold.Isomap(n_neighbors, n_components).fit_transform(bottlenecks)
    B_pca = decomposition.TruncatedSVD(n_components=2).fit_transform(bottlenecks)
    B_lle = manifold.LocallyLinearEmbedding(n_neighbors, n_components, method='standard').fit_transform(bottlenecks)
    B_spec = manifold.SpectralEmbedding(n_components=n_components, random_state=42,
                                        eigen_solver='arpack').fit_transform(bottlenecks)

    plt.figure()

    plt.subplot(221)
    plt.scatter(B_iso[:start_index_outlier, 0], B_iso[:start_index_outlier, 1], marker='o', c='b', alpha=alpha_inlier)
    plt.scatter(B_iso[start_index_outlier:, 0], B_iso[start_index_outlier:, 1], marker='^', c='k')
    plt.title("Isomap projection")

    plt.subplot(222)
    inlier_scatter = plt.scatter(B_lle[:start_index_outlier, 0], B_lle[:start_index_outlier, 1], marker='o', c='b',
                                 alpha=alpha_inlier)
    outlier_scatter = plt.scatter(B_lle[start_index_outlier:, 0], B_lle[start_index_outlier:, 1], marker='^', c='k')
    plt.legend([inlier_scatter, outlier_scatter], ['Inliers', 'Outliers'], loc='lower left')
    plt.title("Locally Linear Embedding")

    plt.subplot(223)
    plt.scatter(B_pca[:start_index_outlier, 0], B_pca[:start_index_outlier, 1], marker='o', c='b', alpha=alpha_inlier)
    plt.scatter(B_pca[start_index_outlier:, 0], B_pca[start_index_outlier:, 1], marker='^', c='k')
    plt.title("Principal Components projection")

    plt.subplot(224)
    plt.scatter(B_spec[:start_index_outlier, 0], B_spec[:start_index_outlier, 1], marker='o', c='b', alpha=alpha_inlier)
    plt.scatter(B_spec[start_index_outlier:, 0], B_spec[start_index_outlier:, 1], marker='^', c='k')
    plt.title("Spectral embedding")

    if suptitle:
        plt.suptitle(suptitle) 
開發者ID:GuillaumeErhard,項目名稱:ImageSetCleaner,代碼行數:49,代碼來源:testing_and_visualisation.py

示例6: component_layout

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import SpectralEmbedding [as 別名]
def component_layout(
    data, n_components, component_labels, dim, metric="euclidean", metric_kwds={}
):
    """Provide a layout relating the separate connected components. This is done
    by taking the centroid of each component and then performing a spectral embedding
    of the centroids.

    Parameters
    ----------
    data: array of shape (n_samples, n_features)
        The source data -- required so we can generate centroids for each
        connected component of the graph.

    n_components: int
        The number of distinct components to be layed out.

    component_labels: array of shape (n_samples)
        For each vertex in the graph the label of the component to
        which the vertex belongs.

    dim: int
        The chosen embedding dimension.

    metric: string or callable (optional, default 'euclidean')
        The metric used to measure distances among the source data points.

    metric_kwds: dict (optional, default {})
        Keyword arguments to be passed to the metric function.

    Returns
    -------
    component_embedding: array of shape (n_components, dim)
        The ``dim``-dimensional embedding of the ``n_components``-many
        connected components.
    """

    component_centroids = np.empty((n_components, data.shape[1]), dtype=np.float64)

    for label in range(n_components):
        component_centroids[label] = data[component_labels == label].mean(axis=0)

    distance_matrix = pairwise_distances(
        component_centroids, metric=metric, **metric_kwds
    )
    affinity_matrix = np.exp(-distance_matrix ** 2)

    component_embedding = SpectralEmbedding(
        n_components=dim, affinity="precomputed"
    ).fit_transform(affinity_matrix)
    component_embedding /= component_embedding.max()

    return component_embedding 
開發者ID:nsalomonis,項目名稱:altanalyze,代碼行數:54,代碼來源:spectral.py


注:本文中的sklearn.manifold.SpectralEmbedding方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。