當前位置: 首頁>>代碼示例>>Python>>正文


Python manifold.LocallyLinearEmbedding方法代碼示例

本文整理匯總了Python中sklearn.manifold.LocallyLinearEmbedding方法的典型用法代碼示例。如果您正苦於以下問題:Python manifold.LocallyLinearEmbedding方法的具體用法?Python manifold.LocallyLinearEmbedding怎麽用?Python manifold.LocallyLinearEmbedding使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.manifold的用法示例。


在下文中一共展示了manifold.LocallyLinearEmbedding方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: learn_manifold

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import LocallyLinearEmbedding [as 別名]
def learn_manifold(manifold_type, feats, n_components=2):
    if manifold_type == 'tsne':
        feats_fitted = manifold.TSNE(n_components=n_components, random_state=0).fit_transform(feats)
    elif manifold_type == 'isomap':
        feats_fitted = manifold.Isomap(n_components=n_components).fit_transform(feats)
    elif manifold_type == 'mds':
        feats_fitted = manifold.MDS(n_components=n_components).fit_transform(feats)
    elif manifold_type == 'spectral':
        feats_fitted = manifold.SpectralEmbedding(n_components=n_components).fit_transform(feats)
    else:
        raise Exception('wrong maniford type!')

    # methods = ['standard', 'ltsa', 'hessian', 'modified']
    # feats_fitted = manifold.LocallyLinearEmbedding(n_components=n_components, method=methods[0]).fit_transform(pred)

    return feats_fitted 
開發者ID:CMU-CREATE-Lab,項目名稱:deep-smoke-machine,代碼行數:18,代碼來源:utils.py

示例2: test_lle_simple_grid

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import LocallyLinearEmbedding [as 別名]
def test_lle_simple_grid():
    # note: ARPACK is numerically unstable, so this test will fail for
    #       some random seeds.  We choose 20 because the tests pass.
    rng = np.random.RandomState(20)
    tol = 0.1
    # grid of equidistant points in 2D, n_components = n_dim
    X = np.array(list(product(range(5), repeat=2)))
    X = X + 1e-10 * rng.uniform(size=X.shape)
    n_components = 2
    G = geom.Geometry(adjacency_kwds = {'radius':3})
    G.set_data_matrix(X)
    tol = 0.1
    distance_matrix = G.compute_adjacency_matrix()
    N = lle.barycenter_graph(distance_matrix, X).todense()
    reconstruction_error = np.linalg.norm(np.dot(N, X) - X, 'fro')
    assert(reconstruction_error < tol)
    for eigen_solver in EIGEN_SOLVERS:
        clf = lle.LocallyLinearEmbedding(n_components = n_components, geom = G,
                                eigen_solver = eigen_solver, random_state = rng)
        clf.fit(X)
        assert(clf.embedding_.shape[1] == n_components)
        reconstruction_error = np.linalg.norm(
        np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2
        assert(reconstruction_error < tol) 
開發者ID:mmp2,項目名稱:megaman,代碼行數:26,代碼來源:test_lle.py

示例3: test_lle_manifold

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import LocallyLinearEmbedding [as 別名]
def test_lle_manifold():
    rng = np.random.RandomState(0)
    # similar test on a slightly more complex manifold
    X = np.array(list(product(np.arange(18), repeat=2)))
    X = np.c_[X, X[:, 0] ** 2 / 18]
    X = X + 1e-10 * rng.uniform(size=X.shape)
    n_components = 2
    G = geom.Geometry(adjacency_kwds = {'radius':3})
    G.set_data_matrix(X)
    distance_matrix = G.compute_adjacency_matrix()
    tol = 1.5
    N = lle.barycenter_graph(distance_matrix, X).todense()
    reconstruction_error = np.linalg.norm(np.dot(N, X) - X)
    assert(reconstruction_error < tol)
    for eigen_solver in EIGEN_SOLVERS:
        clf = lle.LocallyLinearEmbedding(n_components = n_components, geom = G,
                                eigen_solver = eigen_solver, random_state = rng)
        clf.fit(X)
        assert(clf.embedding_.shape[1] == n_components)
        reconstruction_error = np.linalg.norm(
            np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2
        assert(reconstruction_error < tol) 
開發者ID:mmp2,項目名稱:megaman,代碼行數:24,代碼來源:test_lle.py

示例4: test_lle_simple_grid

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import LocallyLinearEmbedding [as 別名]
def test_lle_simple_grid():
    # note: ARPACK is numerically unstable, so this test will fail for
    #       some random seeds.  We choose 2 because the tests pass.
    rng = np.random.RandomState(2)

    # grid of equidistant points in 2D, n_components = n_dim
    X = np.array(list(product(range(5), repeat=2)))
    X = X + 1e-10 * rng.uniform(size=X.shape)
    n_components = 2
    clf = manifold.LocallyLinearEmbedding(n_neighbors=5,
                                          n_components=n_components,
                                          random_state=rng)
    tol = 0.1

    N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray()
    reconstruction_error = linalg.norm(np.dot(N, X) - X, 'fro')
    assert_less(reconstruction_error, tol)

    for solver in eigen_solvers:
        clf.set_params(eigen_solver=solver)
        clf.fit(X)
        assert clf.embedding_.shape[1] == n_components
        reconstruction_error = linalg.norm(
            np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2

        assert_less(reconstruction_error, tol)
        assert_almost_equal(clf.reconstruction_error_,
                            reconstruction_error, decimal=1)

    # re-embed a noisy version of X using the transform method
    noise = rng.randn(*X.shape) / 100
    X_reembedded = clf.transform(X + noise)
    assert_less(linalg.norm(X_reembedded - clf.embedding_), tol) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:35,代碼來源:test_locally_linear.py

示例5: test_lle_manifold

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import LocallyLinearEmbedding [as 別名]
def test_lle_manifold():
    rng = np.random.RandomState(0)
    # similar test on a slightly more complex manifold
    X = np.array(list(product(np.arange(18), repeat=2)))
    X = np.c_[X, X[:, 0] ** 2 / 18]
    X = X + 1e-10 * rng.uniform(size=X.shape)
    n_components = 2
    for method in ["standard", "hessian", "modified", "ltsa"]:
        clf = manifold.LocallyLinearEmbedding(n_neighbors=6,
                                              n_components=n_components,
                                              method=method, random_state=0)
        tol = 1.5 if method == "standard" else 3

        N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray()
        reconstruction_error = linalg.norm(np.dot(N, X) - X)
        assert_less(reconstruction_error, tol)

        for solver in eigen_solvers:
            clf.set_params(eigen_solver=solver)
            clf.fit(X)
            assert clf.embedding_.shape[1] == n_components
            reconstruction_error = linalg.norm(
                np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2
            details = ("solver: %s, method: %s" % (solver, method))
            assert_less(reconstruction_error, tol, msg=details)
            assert_less(np.abs(clf.reconstruction_error_ -
                               reconstruction_error),
                        tol * reconstruction_error, msg=details)


# Test the error raised when parameter passed to lle is invalid 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:33,代碼來源:test_locally_linear.py

示例6: test_lle_init_parameters

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import LocallyLinearEmbedding [as 別名]
def test_lle_init_parameters():
    X = np.random.rand(5, 3)

    clf = manifold.LocallyLinearEmbedding(eigen_solver="error")
    msg = "unrecognized eigen_solver 'error'"
    assert_raise_message(ValueError, msg, clf.fit, X)

    clf = manifold.LocallyLinearEmbedding(method="error")
    msg = "unrecognized method 'error'"
    assert_raise_message(ValueError, msg, clf.fit, X) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:12,代碼來源:test_locally_linear.py

示例7: test_pipeline

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import LocallyLinearEmbedding [as 別名]
def test_pipeline():
    # check that LocallyLinearEmbedding works fine as a Pipeline
    # only checks that no error is raised.
    # TODO check that it actually does something useful
    from sklearn import pipeline, datasets
    X, y = datasets.make_blobs(random_state=0)
    clf = pipeline.Pipeline(
        [('filter', manifold.LocallyLinearEmbedding(random_state=0)),
         ('clf', neighbors.KNeighborsClassifier())])
    clf.fit(X, y)
    assert_less(.9, clf.score(X, y))


# Test the error raised when the weight matrix is singular 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:16,代碼來源:test_locally_linear.py

示例8: test_integer_input

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import LocallyLinearEmbedding [as 別名]
def test_integer_input():
    rand = np.random.RandomState(0)
    X = rand.randint(0, 100, size=(20, 3))

    for method in ["standard", "hessian", "modified", "ltsa"]:
        clf = manifold.LocallyLinearEmbedding(method=method, n_neighbors=10)
        clf.fit(X)  # this previously raised a TypeError 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:9,代碼來源:test_locally_linear.py

示例9: test_ltsa_with_sklearn

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import LocallyLinearEmbedding [as 別名]
def test_ltsa_with_sklearn():
    N = 10
    X, color = datasets.samples_generator.make_s_curve(N, random_state=0)
    n_components = 2
    n_neighbors = 3
    knn = NearestNeighbors(n_neighbors + 1).fit(X)
    G = geom.Geometry()
    G.set_data_matrix(X)
    G.set_adjacency_matrix(knn.kneighbors_graph(X, mode = 'distance'))
    sk_Y_ltsa = manifold.LocallyLinearEmbedding(n_neighbors, n_components,
                                                method = 'ltsa',
                                                eigen_solver = 'arpack').fit_transform(X)
    (mm_Y_ltsa, err) = ltsa.ltsa(G, n_components, eigen_solver = 'arpack')
    assert(_check_with_col_sign_flipping(sk_Y_ltsa, mm_Y_ltsa, 0.05)) 
開發者ID:mmp2,項目名稱:megaman,代碼行數:16,代碼來源:test_ltsa.py

示例10: test_lle_with_sklearn

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import LocallyLinearEmbedding [as 別名]
def test_lle_with_sklearn():
    N = 10
    X, color = datasets.samples_generator.make_s_curve(N, random_state=0)
    n_components = 2
    n_neighbors = 3
    knn = NearestNeighbors(n_neighbors + 1).fit(X)
    G = geom.Geometry()
    G.set_data_matrix(X)
    G.set_adjacency_matrix(knn.kneighbors_graph(X, mode = 'distance'))
    sk_Y_lle = manifold.LocallyLinearEmbedding(n_neighbors, n_components, method = 'standard').fit_transform(X)
    (mm_Y_lle, err) = lle.locally_linear_embedding(G, n_components)
    assert(_check_with_col_sign_flipping(sk_Y_lle, mm_Y_lle, 0.05)) 
開發者ID:mmp2,項目名稱:megaman,代碼行數:14,代碼來源:test_lle.py

示例11: test_objectmapper

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import LocallyLinearEmbedding [as 別名]
def test_objectmapper(self):
        df = pdml.ModelFrame([])
        self.assertIs(df.manifold.LocallyLinearEmbedding,
                      manifold.LocallyLinearEmbedding)
        self.assertIs(df.manifold.Isomap, manifold.Isomap)
        self.assertIs(df.manifold.MDS, manifold.MDS)
        self.assertIs(df.manifold.SpectralEmbedding, manifold.SpectralEmbedding)
        self.assertIs(df.manifold.TSNE, manifold.TSNE) 
開發者ID:pandas-ml,項目名稱:pandas-ml,代碼行數:10,代碼來源:test_manifold.py

示例12: test_lle_simple_grid

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import LocallyLinearEmbedding [as 別名]
def test_lle_simple_grid():
    # note: ARPACK is numerically unstable, so this test will fail for
    #       some random seeds.  We choose 2 because the tests pass.
    rng = np.random.RandomState(2)

    # grid of equidistant points in 2D, n_components = n_dim
    X = np.array(list(product(range(5), repeat=2)))
    X = X + 1e-10 * rng.uniform(size=X.shape)
    n_components = 2
    clf = manifold.LocallyLinearEmbedding(n_neighbors=5,
                                          n_components=n_components,
                                          random_state=rng)
    tol = 0.1

    N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray()
    reconstruction_error = linalg.norm(np.dot(N, X) - X, 'fro')
    assert_less(reconstruction_error, tol)

    for solver in eigen_solvers:
        clf.set_params(eigen_solver=solver)
        clf.fit(X)
        assert_true(clf.embedding_.shape[1] == n_components)
        reconstruction_error = linalg.norm(
            np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2

        assert_less(reconstruction_error, tol)
        assert_almost_equal(clf.reconstruction_error_,
                            reconstruction_error, decimal=1)

    # re-embed a noisy version of X using the transform method
    noise = rng.randn(*X.shape) / 100
    X_reembedded = clf.transform(X + noise)
    assert_less(linalg.norm(X_reembedded - clf.embedding_), tol) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:35,代碼來源:test_locally_linear.py

示例13: test_lle_manifold

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import LocallyLinearEmbedding [as 別名]
def test_lle_manifold():
    rng = np.random.RandomState(0)
    # similar test on a slightly more complex manifold
    X = np.array(list(product(np.arange(18), repeat=2)))
    X = np.c_[X, X[:, 0] ** 2 / 18]
    X = X + 1e-10 * rng.uniform(size=X.shape)
    n_components = 2
    for method in ["standard", "hessian", "modified", "ltsa"]:
        clf = manifold.LocallyLinearEmbedding(n_neighbors=6,
                                              n_components=n_components,
                                              method=method, random_state=0)
        tol = 1.5 if method == "standard" else 3

        N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray()
        reconstruction_error = linalg.norm(np.dot(N, X) - X)
        assert_less(reconstruction_error, tol)

        for solver in eigen_solvers:
            clf.set_params(eigen_solver=solver)
            clf.fit(X)
            assert_true(clf.embedding_.shape[1] == n_components)
            reconstruction_error = linalg.norm(
                np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2
            details = ("solver: %s, method: %s" % (solver, method))
            assert_less(reconstruction_error, tol, msg=details)
            assert_less(np.abs(clf.reconstruction_error_ -
                               reconstruction_error),
                        tol * reconstruction_error, msg=details)


# Test the error raised when parameter passed to lle is invalid 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:33,代碼來源:test_locally_linear.py

示例14: see_iso_map

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import LocallyLinearEmbedding [as 別名]
def see_iso_map(bottlenecks, labels, suptitle=None):
    """

    :param bottlenecks:
    :param labels:
    :param suptitle: String to add as plot suptitles
    :return: Nothing, will just plot a scatter plot to show the distribution of our data after dimensionality reduction.
    """

    n_samples, n_features = bottlenecks.shape
    n_neighbors = 25
    n_components = 2
    start_index_outlier = np.where(labels == 1)[0][0]
    alpha_inlier = 0.25

    B_iso = manifold.Isomap(n_neighbors, n_components).fit_transform(bottlenecks)
    B_pca = decomposition.TruncatedSVD(n_components=2).fit_transform(bottlenecks)
    B_lle = manifold.LocallyLinearEmbedding(n_neighbors, n_components, method='standard').fit_transform(bottlenecks)
    B_spec = manifold.SpectralEmbedding(n_components=n_components, random_state=42,
                                        eigen_solver='arpack').fit_transform(bottlenecks)

    plt.figure()

    plt.subplot(221)
    plt.scatter(B_iso[:start_index_outlier, 0], B_iso[:start_index_outlier, 1], marker='o', c='b', alpha=alpha_inlier)
    plt.scatter(B_iso[start_index_outlier:, 0], B_iso[start_index_outlier:, 1], marker='^', c='k')
    plt.title("Isomap projection")

    plt.subplot(222)
    inlier_scatter = plt.scatter(B_lle[:start_index_outlier, 0], B_lle[:start_index_outlier, 1], marker='o', c='b',
                                 alpha=alpha_inlier)
    outlier_scatter = plt.scatter(B_lle[start_index_outlier:, 0], B_lle[start_index_outlier:, 1], marker='^', c='k')
    plt.legend([inlier_scatter, outlier_scatter], ['Inliers', 'Outliers'], loc='lower left')
    plt.title("Locally Linear Embedding")

    plt.subplot(223)
    plt.scatter(B_pca[:start_index_outlier, 0], B_pca[:start_index_outlier, 1], marker='o', c='b', alpha=alpha_inlier)
    plt.scatter(B_pca[start_index_outlier:, 0], B_pca[start_index_outlier:, 1], marker='^', c='k')
    plt.title("Principal Components projection")

    plt.subplot(224)
    plt.scatter(B_spec[:start_index_outlier, 0], B_spec[:start_index_outlier, 1], marker='o', c='b', alpha=alpha_inlier)
    plt.scatter(B_spec[start_index_outlier:, 0], B_spec[start_index_outlier:, 1], marker='^', c='k')
    plt.title("Spectral embedding")

    if suptitle:
        plt.suptitle(suptitle) 
開發者ID:GuillaumeErhard,項目名稱:ImageSetCleaner,代碼行數:49,代碼來源:testing_and_visualisation.py

示例15: visualize_encodings

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import LocallyLinearEmbedding [as 別名]
def visualize_encodings(encodings, file_name=None,
                        grid=None, skip_every=999, fast=False, fig=None, interactive=False):
  encodings = manual_pca(encodings)
  if encodings.shape[1] <= 3:
    return print_data_only(encodings, file_name, fig=fig, interactive=interactive)

  encodings = encodings[0:720]
  hessian_euc = dist.squareform(dist.pdist(encodings[0:720], 'euclidean'))
  hessian_cos = dist.squareform(dist.pdist(encodings[0:720], 'cosine'))
  grid = (3, 4) if grid is None else grid
  project_ops = []

  n = 2
  project_ops.append(("LLE ltsa       N:%d" % n, mn.LocallyLinearEmbedding(10, n, method='ltsa')))
  project_ops.append(("LLE modified   N:%d" % n, mn.LocallyLinearEmbedding(10, n, method='modified')))
  project_ops.append(('MDS euclidean  N:%d' % n, mn.MDS(n, max_iter=300, n_init=1, dissimilarity='precomputed')))
  project_ops.append(("TSNE 30/2000   N:%d" % n, TSNE(perplexity=30, n_components=n, init='pca', n_iter=2000)))
  n = 3
  project_ops.append(("LLE ltsa       N:%d" % n, mn.LocallyLinearEmbedding(10, n, method='ltsa')))
  project_ops.append(("LLE modified   N:%d" % n, mn.LocallyLinearEmbedding(10, n, method='modified')))
  project_ops.append(('MDS euclidean  N:%d' % n, mn.MDS(n, max_iter=300, n_init=1, dissimilarity='precomputed')))
  project_ops.append(('MDS cosine     N:%d' % n, mn.MDS(n, max_iter=300, n_init=1, dissimilarity='precomputed')))

  plot_places = []
  for i in range(12):
    u, v = int(i / (skip_every - 1)), i % (skip_every - 1)
    j = v + u * skip_every + 1
    plot_places.append(j)

  fig = get_figure(fig)
  fig.set_size_inches(fig.get_size_inches()[0] * grid[0] / 1.,
                      fig.get_size_inches()[1] * grid[1] / 2.0)

  for i, (name, manifold) in enumerate(project_ops):
    is3d = 'N:3' in name

    try:
      if is3d:
        subplot = plt.subplot(grid[0], grid[1], plot_places[i], projection='3d')
      else:
        subplot = plt.subplot(grid[0], grid[1], plot_places[i])

      data_source = encodings if not _needs_hessian(manifold) else \
        (hessian_cos if 'cosine' in name else hessian_euc)
      projections = manifold.fit_transform(data_source)
      scatter(subplot, projections, is3d, _build_radial_colors(len(data_source)))
      subplot.set_title(name)
    except:
      print(name, "Unexpected error: ", sys.exc_info()[0], sys.exc_info()[1] if len(sys.exc_info()) > 1 else '')

  visualize_data_same(encodings, grid=grid, places=plot_places[-4:])
  if not interactive:
    save_fig(file_name, fig)
  ut.print_time('visualization finished') 
開發者ID:yselivonchyk,項目名稱:TensorFlow_DCIGN,代碼行數:56,代碼來源:visualization.py


注:本文中的sklearn.manifold.LocallyLinearEmbedding方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。