當前位置: 首頁>>代碼示例>>Python>>正文


Python manifold.Isomap方法代碼示例

本文整理匯總了Python中sklearn.manifold.Isomap方法的典型用法代碼示例。如果您正苦於以下問題:Python manifold.Isomap方法的具體用法?Python manifold.Isomap怎麽用?Python manifold.Isomap使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.manifold的用法示例。


在下文中一共展示了manifold.Isomap方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: learn_manifold

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import Isomap [as 別名]
def learn_manifold(manifold_type, feats, n_components=2):
    if manifold_type == 'tsne':
        feats_fitted = manifold.TSNE(n_components=n_components, random_state=0).fit_transform(feats)
    elif manifold_type == 'isomap':
        feats_fitted = manifold.Isomap(n_components=n_components).fit_transform(feats)
    elif manifold_type == 'mds':
        feats_fitted = manifold.MDS(n_components=n_components).fit_transform(feats)
    elif manifold_type == 'spectral':
        feats_fitted = manifold.SpectralEmbedding(n_components=n_components).fit_transform(feats)
    else:
        raise Exception('wrong maniford type!')

    # methods = ['standard', 'ltsa', 'hessian', 'modified']
    # feats_fitted = manifold.LocallyLinearEmbedding(n_components=n_components, method=methods[0]).fit_transform(pred)

    return feats_fitted 
開發者ID:CMU-CREATE-Lab,項目名稱:deep-smoke-machine,代碼行數:18,代碼來源:utils.py

示例2: test_skl

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import Isomap [as 別名]
def test_skl(self):
        tt = nx.generators.complete_graph(25)
        ndim = 3
        skle = nodevectors.SKLearnEmbedder(
            manifold.Isomap, 
            n_components=ndim,
            n_neighbors=3)
        skle.fit(tt)
        res_v = skle.predict(9)
        self.assertTrue(len(res_v) == ndim)
        # Test save/load
        fname = 'test_saving'
        try:
            skle.save(fname)
            g2v_l = nodevectors.SKLearnEmbedder.load(fname + '.zip')
            res_l = g2v_l.predict(9)
            self.assertTrue(len(res_l) == ndim)
            np.testing.assert_array_almost_equal(res_l, res_v)
        finally:
            os.remove(fname + '.zip') 
開發者ID:VHRanger,項目名稱:nodevectors,代碼行數:22,代碼來源:test_node2vec.py

示例3: isomap

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import Isomap [as 別名]
def isomap(features, n_components=2):
    """
    Returns the embedded points for Isomap.
    Parameters
    ----------
    features: numpy.ndarray
        contains the input feature vectors.
    n_components: int
        number of components to transform the features into

    Returns
    -------
    embedding: numpy.ndarray
        x,y(z) points that the feature vectors have been transformed into
    """
    embedding = Isomap(n_components=n_components, n_jobs=-1).fit_transform(features)
    return embedding 
開發者ID:DIVA-DIA,項目名稱:DeepDIVA,代碼行數:19,代碼來源:embedding.py

示例4: test_isomap_simple_grid

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import Isomap [as 別名]
def test_isomap_simple_grid():
    # Isomap should preserve distances when all neighbors are used
    N_per_side = 5
    Npts = N_per_side ** 2
    n_neighbors = Npts - 1

    # grid of equidistant points in 2D, n_components = n_dim
    X = np.array(list(product(range(N_per_side), repeat=2)))

    # distances from each point to all others
    G = neighbors.kneighbors_graph(X, n_neighbors,
                                   mode='distance').toarray()

    for eigen_solver in eigen_solvers:
        for path_method in path_methods:
            clf = manifold.Isomap(n_neighbors=n_neighbors, n_components=2,
                                  eigen_solver=eigen_solver,
                                  path_method=path_method)
            clf.fit(X)

            G_iso = neighbors.kneighbors_graph(clf.embedding_,
                                               n_neighbors,
                                               mode='distance').toarray()
            assert_array_almost_equal(G, G_iso) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:26,代碼來源:test_isomap.py

示例5: test_transform

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import Isomap [as 別名]
def test_transform():
    n_samples = 200
    n_components = 10
    noise_scale = 0.01

    # Create S-curve dataset
    X, y = datasets.samples_generator.make_s_curve(n_samples, random_state=0)

    # Compute isomap embedding
    iso = manifold.Isomap(n_components, 2)
    X_iso = iso.fit_transform(X)

    # Re-embed a noisy version of the points
    rng = np.random.RandomState(0)
    noise = noise_scale * rng.randn(*X.shape)
    X_iso2 = iso.transform(X + noise)

    # Make sure the rms error on re-embedding is comparable to noise_scale
    assert_less(np.sqrt(np.mean((X_iso - X_iso2) ** 2)), 2 * noise_scale) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:21,代碼來源:test_isomap.py

示例6: compute_reduced_space

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import Isomap [as 別名]
def compute_reduced_space(self):
        model = None
        model_data =  np.asarray([dic_slice.im_M.flatten() for dic_slice in self.slices])

        if self.param_model.method == 'pca':
            # PCA
            model = decomposition.PCA(n_components=self.param_model.k_pca)
            self.fitted_data = model.fit_transform(model_data)

        if self.param_model.method == 'isomap':
            # ISOMAP
            n_neighbors = self.param_model.n_neighbors_iso
            n_components = int(model_data.shape[0] * self.param_model.n_compo_iso)

            model = manifold.Isomap(n_neighbors=n_neighbors, n_components=n_components)
            self.fitted_data = model.fit_transform(model_data)

        # save model after bing fitted to data
        self.fitted_model = model

    # ------------------------------------------------------------------------------------------------------------------ 
開發者ID:neuropoly,項目名稱:spinalcordtoolbox,代碼行數:23,代碼來源:msct_multiatlas_seg.py

示例7: test_isomap_reconstruction_error

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import Isomap [as 別名]
def test_isomap_reconstruction_error():
    # Same setup as in test_isomap_simple_grid, with an added dimension
    N_per_side = 5
    Npts = N_per_side ** 2
    n_neighbors = Npts - 1

    # grid of equidistant points in 2D, n_components = n_dim
    X = np.array(list(product(range(N_per_side), repeat=2)))

    # add noise in a third dimension
    rng = np.random.RandomState(0)
    noise = 0.1 * rng.randn(Npts, 1)
    X = np.concatenate((X, noise), 1)

    # compute input kernel
    G = neighbors.kneighbors_graph(X, n_neighbors,
                                   mode='distance').toarray()

    centerer = preprocessing.KernelCenterer()
    K = centerer.fit_transform(-0.5 * G ** 2)

    for eigen_solver in eigen_solvers:
        for path_method in path_methods:
            clf = manifold.Isomap(n_neighbors=n_neighbors, n_components=2,
                                  eigen_solver=eigen_solver,
                                  path_method=path_method)
            clf.fit(X)

            # compute output kernel
            G_iso = neighbors.kneighbors_graph(clf.embedding_,
                                               n_neighbors,
                                               mode='distance').toarray()

            K_iso = centerer.fit_transform(-0.5 * G_iso ** 2)

            # make sure error agrees
            reconstruction_error = np.linalg.norm(K - K_iso) / Npts
            assert_almost_equal(reconstruction_error,
                                clf.reconstruction_error()) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:41,代碼來源:test_isomap.py

示例8: test_pipeline

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import Isomap [as 別名]
def test_pipeline():
    # check that Isomap works fine as a transformer in a Pipeline
    # only checks that no error is raised.
    # TODO check that it actually does something useful
    X, y = datasets.make_blobs(random_state=0)
    clf = pipeline.Pipeline(
        [('isomap', manifold.Isomap()),
         ('clf', neighbors.KNeighborsClassifier())])
    clf.fit(X, y)
    assert_less(.9, clf.score(X, y)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:12,代碼來源:test_isomap.py

示例9: test_isomap_clone_bug

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import Isomap [as 別名]
def test_isomap_clone_bug():
    # regression test for bug reported in #6062
    model = manifold.Isomap()
    for n_neighbors in [10, 15, 20]:
        model.set_params(n_neighbors=n_neighbors)
        model.fit(np.random.rand(50, 2))
        assert_equal(model.nbrs_.n_neighbors,
                     n_neighbors) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:10,代碼來源:test_isomap.py

示例10: __init__

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import Isomap [as 別名]
def __init__(self, param_model=None, param_data=None, param=None):
        self.param_model = param_model if param_model is not None else ParamModel()
        self.param_data = param_data if param_data is not None else ParamData()
        self.param = param if param is not None else Param()

        self.slices = []  # list of Slice() : Model dictionary
        self.mean_image = None
        self.intensities = None

        self.fitted_model = None  # PCA or Isomap model
        self.fitted_data = None

    # ------------------------------------------------------------------------------------------------------------------
    #                                       FUNCTIONS USED TO COMPUTE THE MODEL
    # ------------------------------------------------------------------------------------------------------------------ 
開發者ID:neuropoly,項目名稱:spinalcordtoolbox,代碼行數:17,代碼來源:msct_multiatlas_seg.py

示例11: test_isomap_with_sklearn

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import Isomap [as 別名]
def test_isomap_with_sklearn():
    N = 10
    X, color = datasets.samples_generator.make_s_curve(N, random_state=0)
    n_components = 2
    n_neighbors = 3
    knn = NearestNeighbors(n_neighbors + 1).fit(X)
    # Assign the geometry matrix to get the same answer since sklearn using k-neighbors instead of radius-neighbors
    g = geom.Geometry(X)
    g.set_adjacency_matrix(knn.kneighbors_graph(X, mode = 'distance'))
    # test Isomap with sklearn
    sk_Y_iso = manifold.Isomap(n_neighbors, n_components, eigen_solver = 'arpack').fit_transform(X)
    mm_Y_iso = iso.isomap(g, n_components)
    assert(_check_with_col_sign_flipping(sk_Y_iso, mm_Y_iso, 0.05)) 
開發者ID:mmp2,項目名稱:megaman,代碼行數:15,代碼來源:test_isomap.py

示例12: test_isomap_simple_grid

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import Isomap [as 別名]
def test_isomap_simple_grid():
    # Isomap should preserve distances when all neighbors are used
    N_per_side = 5
    Npts = N_per_side ** 2
    radius = 10
    # grid of equidistant points in 2D, n_components = n_dim
    X = np.array(list(product(range(N_per_side), repeat=2)))
    # distances from each point to all others
    G = squareform(pdist(X))
    g = geom.Geometry(adjacency_kwds = {'radius':radius})
    for eigen_solver in EIGEN_SOLVERS:
        clf = iso.Isomap(n_components = 2, eigen_solver = eigen_solver, geom=g)
        clf.fit(X)
        G_iso = squareform(pdist(clf.embedding_))
        assert_array_almost_equal(G, G_iso) 
開發者ID:mmp2,項目名稱:megaman,代碼行數:17,代碼來源:test_isomap.py

示例13: test_objectmapper

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import Isomap [as 別名]
def test_objectmapper(self):
        df = pdml.ModelFrame([])
        self.assertIs(df.manifold.LocallyLinearEmbedding,
                      manifold.LocallyLinearEmbedding)
        self.assertIs(df.manifold.Isomap, manifold.Isomap)
        self.assertIs(df.manifold.MDS, manifold.MDS)
        self.assertIs(df.manifold.SpectralEmbedding, manifold.SpectralEmbedding)
        self.assertIs(df.manifold.TSNE, manifold.TSNE) 
開發者ID:pandas-ml,項目名稱:pandas-ml,代碼行數:10,代碼來源:test_manifold.py

示例14: see_iso_map

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import Isomap [as 別名]
def see_iso_map(bottlenecks, labels, suptitle=None):
    """

    :param bottlenecks:
    :param labels:
    :param suptitle: String to add as plot suptitles
    :return: Nothing, will just plot a scatter plot to show the distribution of our data after dimensionality reduction.
    """

    n_samples, n_features = bottlenecks.shape
    n_neighbors = 25
    n_components = 2
    start_index_outlier = np.where(labels == 1)[0][0]
    alpha_inlier = 0.25

    B_iso = manifold.Isomap(n_neighbors, n_components).fit_transform(bottlenecks)
    B_pca = decomposition.TruncatedSVD(n_components=2).fit_transform(bottlenecks)
    B_lle = manifold.LocallyLinearEmbedding(n_neighbors, n_components, method='standard').fit_transform(bottlenecks)
    B_spec = manifold.SpectralEmbedding(n_components=n_components, random_state=42,
                                        eigen_solver='arpack').fit_transform(bottlenecks)

    plt.figure()

    plt.subplot(221)
    plt.scatter(B_iso[:start_index_outlier, 0], B_iso[:start_index_outlier, 1], marker='o', c='b', alpha=alpha_inlier)
    plt.scatter(B_iso[start_index_outlier:, 0], B_iso[start_index_outlier:, 1], marker='^', c='k')
    plt.title("Isomap projection")

    plt.subplot(222)
    inlier_scatter = plt.scatter(B_lle[:start_index_outlier, 0], B_lle[:start_index_outlier, 1], marker='o', c='b',
                                 alpha=alpha_inlier)
    outlier_scatter = plt.scatter(B_lle[start_index_outlier:, 0], B_lle[start_index_outlier:, 1], marker='^', c='k')
    plt.legend([inlier_scatter, outlier_scatter], ['Inliers', 'Outliers'], loc='lower left')
    plt.title("Locally Linear Embedding")

    plt.subplot(223)
    plt.scatter(B_pca[:start_index_outlier, 0], B_pca[:start_index_outlier, 1], marker='o', c='b', alpha=alpha_inlier)
    plt.scatter(B_pca[start_index_outlier:, 0], B_pca[start_index_outlier:, 1], marker='^', c='k')
    plt.title("Principal Components projection")

    plt.subplot(224)
    plt.scatter(B_spec[:start_index_outlier, 0], B_spec[:start_index_outlier, 1], marker='o', c='b', alpha=alpha_inlier)
    plt.scatter(B_spec[start_index_outlier:, 0], B_spec[start_index_outlier:, 1], marker='^', c='k')
    plt.title("Spectral embedding")

    if suptitle:
        plt.suptitle(suptitle) 
開發者ID:GuillaumeErhard,項目名稱:ImageSetCleaner,代碼行數:49,代碼來源:testing_and_visualisation.py

示例15: create_isomap_features

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import Isomap [as 別名]
def create_isomap_features(features, model):
    r"""Create Isomap features.

    Parameters
    ----------
    features : numpy array
        The input features.
    model : alphapy.Model
        The model object with the Isomap parameters.

    Returns
    -------
    ifeatures : numpy array
        The Isomap features.
    inames : list
        The Isomap feature names.

    Notes
    -----

    Isomaps are very memory-intensive. Your process will be killed
    if you run out of memory.

    References
    ----------
    You can find more information on Principal Component Analysis here [ISO]_.

    .. [ISO] http://scikit-learn.org/stable/modules/manifold.html#isomap

    """

    logger.info("Creating Isomap Features")

    # Extract model parameters

    iso_components = model.specs['iso_components']
    iso_neighbors = model.specs['iso_neighbors']
    n_jobs = model.specs['n_jobs']

    # Log model parameters

    logger.info("Isomap Components : %d", iso_components)
    logger.info("Isomap Neighbors  : %d", iso_neighbors)

    # Generate Isomap features

    model = Isomap(n_neighbors=iso_neighbors, n_components=iso_components,
                   n_jobs=n_jobs)
    ifeatures = model.fit_transform(features)
    inames = [USEP.join(['isomap', str(i+1)]) for i in range(iso_components)]

    # Return new Isomap features

    logger.info("Isomap Feature Count : %d", ifeatures.shape[1])
    return ifeatures, inames


#
# Function create_tsne_features
# 
開發者ID:ScottfreeLLC,項目名稱:AlphaPy,代碼行數:62,代碼來源:features.py


注:本文中的sklearn.manifold.Isomap方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。