本文整理匯總了Python中sklearn.linear_model.logistic.LogisticRegression方法的典型用法代碼示例。如果您正苦於以下問題:Python logistic.LogisticRegression方法的具體用法?Python logistic.LogisticRegression怎麽用?Python logistic.LogisticRegression使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.linear_model.logistic
的用法示例。
在下文中一共展示了logistic.LogisticRegression方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: check_l1_min_c
# 需要導入模塊: from sklearn.linear_model import logistic [as 別名]
# 或者: from sklearn.linear_model.logistic import LogisticRegression [as 別名]
def check_l1_min_c(X, y, loss, fit_intercept=True, intercept_scaling=None):
min_c = l1_min_c(X, y, loss, fit_intercept, intercept_scaling)
clf = {
'log': LogisticRegression(penalty='l1', solver='liblinear',
multi_class='ovr'),
'squared_hinge': LinearSVC(loss='squared_hinge',
penalty='l1', dual=False),
}[loss]
clf.fit_intercept = fit_intercept
clf.intercept_scaling = intercept_scaling
clf.C = min_c
clf.fit(X, y)
assert (np.asarray(clf.coef_) == 0).all()
assert (np.asarray(clf.intercept_) == 0).all()
clf.C = min_c * 1.01
clf.fit(X, y)
assert ((np.asarray(clf.coef_) != 0).any() or
(np.asarray(clf.intercept_) != 0).any())
示例2: initialize_with_logistic_regression
# 需要導入模塊: from sklearn.linear_model import logistic [as 別名]
# 或者: from sklearn.linear_model.logistic import LogisticRegression [as 別名]
def initialize_with_logistic_regression(self, zs, xs):
from sklearn.linear_model.logistic import LogisticRegression
lr = LogisticRegression(verbose=False, multi_class="multinomial", solver="lbfgs")
# Make the covariates
K, D = self.num_states, self.covariate_dim
zs = zs if isinstance(zs, np.ndarray) else np.concatenate(zs, axis=0)
xs = xs if isinstance(xs, np.ndarray) else np.concatenate(xs, axis=0)
assert zs.shape[0] == xs.shape[0]
assert zs.ndim == 1 and zs.dtype == np.int32 and zs.min() >= 0 and zs.max() < K
assert xs.ndim == 2 and xs.shape[1] == D
lr_X = xs[:-1]
lr_y = zs[1:]
lr.fit(lr_X, lr_y)
# Now convert the logistic regression into weights
used = np.bincount(zs, minlength=K) > 0
self.W = np.zeros((D, K))
self.W[:, used] = lr.coef_.T
b = np.zeros((K,))
b[used] += lr.intercept_
b[~used] += -100.
self.b = b
示例3: __init__
# 需要導入模塊: from sklearn.linear_model import logistic [as 別名]
# 或者: from sklearn.linear_model.logistic import LogisticRegression [as 別名]
def __init__(self, penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight='balanced', random_state=None, solver='liblinear', max_iter=100, multi_class='ovr', verbose=0, warm_start=False, n_jobs=None):
self._hyperparams = {
'penalty': penalty,
'dual': dual,
'tol': tol,
'C': C,
'fit_intercept': fit_intercept,
'intercept_scaling': intercept_scaling,
'class_weight': class_weight,
'random_state': random_state,
'solver': solver,
'max_iter': max_iter,
'multi_class': multi_class,
'verbose': verbose,
'warm_start': warm_start,
'n_jobs': n_jobs}
self._wrapped_model = Op(**self._hyperparams)
示例4: test_pipeline_same_results
# 需要導入模塊: from sklearn.linear_model import logistic [as 別名]
# 或者: from sklearn.linear_model.logistic import LogisticRegression [as 別名]
def test_pipeline_same_results(self):
X, y, Z = self.make_classification(2, 10000, 2000)
loc_clf = LogisticRegression()
loc_filter = VarianceThreshold()
loc_pipe = Pipeline([
('threshold', loc_filter),
('logistic', loc_clf)
])
dist_clf = SparkLogisticRegression()
dist_filter = SparkVarianceThreshold()
dist_pipe = SparkPipeline([
('threshold', dist_filter),
('logistic', dist_clf)
])
dist_filter.fit(Z)
loc_pipe.fit(X, y)
dist_pipe.fit(Z, logistic__classes=np.unique(y))
assert_true(np.mean(np.abs(
loc_pipe.predict(X) -
np.concatenate(dist_pipe.predict(Z[:, 'X']).collect())
)) < 0.1)
示例5: check_l1_min_c
# 需要導入模塊: from sklearn.linear_model import logistic [as 別名]
# 或者: from sklearn.linear_model.logistic import LogisticRegression [as 別名]
def check_l1_min_c(X, y, loss, fit_intercept=True, intercept_scaling=None):
min_c = l1_min_c(X, y, loss, fit_intercept, intercept_scaling)
clf = {
'log': LogisticRegression(penalty='l1'),
'squared_hinge': LinearSVC(loss='squared_hinge',
penalty='l1', dual=False),
}[loss]
clf.fit_intercept = fit_intercept
clf.intercept_scaling = intercept_scaling
clf.C = min_c
clf.fit(X, y)
assert_true((np.asarray(clf.coef_) == 0).all())
assert_true((np.asarray(clf.intercept_) == 0).all())
clf.C = min_c * 1.01
clf.fit(X, y)
assert_true((np.asarray(clf.coef_) != 0).any() or
(np.asarray(clf.intercept_) != 0).any())
示例6: new_grid_search
# 需要導入模塊: from sklearn.linear_model import logistic [as 別名]
# 或者: from sklearn.linear_model.logistic import LogisticRegression [as 別名]
def new_grid_search():
""" Create new GridSearch obj with models pipeline """
pipeline = Pipeline([
# TODO some smart preproc can be added here
(u"clf", LogisticRegression(class_weight="balanced")),
])
search_params = {"clf__C": (1e-4, 1e-2, 1e0, 1e2, 1e4)}
return GridSearchCV(
estimator=pipeline,
param_grid=search_params,
scoring="recall_macro",
cv=10,
n_jobs=-1,
verbose=3,
)
示例7: create_model
# 需要導入模塊: from sklearn.linear_model import logistic [as 別名]
# 或者: from sklearn.linear_model.logistic import LogisticRegression [as 別名]
def create_model():
from sklearn.linear_model.logistic import LogisticRegression
clf = LogisticRegression()
return clf
開發者ID:PacktPublishing,項目名稱:Building-Machine-Learning-Systems-With-Python-Second-Edition,代碼行數:7,代碼來源:02_ceps_based_classifier.py
示例8: getEstimator
# 需要導入模塊: from sklearn.linear_model import logistic [as 別名]
# 或者: from sklearn.linear_model.logistic import LogisticRegression [as 別名]
def getEstimator(scorer_type):
if scorer_type == 'grad_boost':
clf = GradientBoostingClassifier(n_estimators=200, random_state=14128, verbose=True)
if scorer_type == 'svm1': # stochastic gradient decent classifier
clf = svm.SVC(gamma=0.001, C=100., verbose=True)
if scorer_type == 'logistic_regression' :
clf = logistic.LogisticRegression()
if scorer_type == 'svm3':
clf = svm.SVC(kernel='poly', C=1.0, probability=True, class_weight='unbalanced')
if scorer_type == "bayes":
clf = naive_bayes.GaussianNB()
if scorer_type == 'voting_hard_svm_gradboost_logistic':
svm2 = svm.SVC(kernel='linear', C=1.0, probability=True, class_weight='balanced', verbose=True)
log_reg = logistic.LogisticRegression()
gradboost = GradientBoostingClassifier(n_estimators=200, random_state=14128, verbose=True)
clf = VotingClassifier(estimators=[ # ('gb', gb),
('svm', svm2),
('grad_boost', gradboost),
('logisitc_regression', log_reg)
], n_jobs=1,
voting='hard')
if scorer_type == 'voting_hard_bayes_gradboost':
bayes = naive_bayes.GaussianNB()
gradboost = GradientBoostingClassifier(n_estimators=200, random_state=14128, verbose=True)
clf = VotingClassifier(estimators=[ # ('gb', gb),
('bayes', bayes),
('grad_boost', gradboost),
], n_jobs=1,
voting='hard')
return clf
示例9: get_classification_models
# 需要導入模塊: from sklearn.linear_model import logistic [as 別名]
# 或者: from sklearn.linear_model.logistic import LogisticRegression [as 別名]
def get_classification_models():
models = [
LogisticRegression(random_state=1),
RandomForestClassifier(n_estimators=64, max_depth=5, random_state=1),
]
return models
示例10: fit_proxy
# 需要導入模塊: from sklearn.linear_model import logistic [as 別名]
# 或者: from sklearn.linear_model.logistic import LogisticRegression [as 別名]
def fit_proxy(explained_model, x, y):
if isinstance(explained_model, LogisticRegression):
y_cur = np.argmax(y, axis=-1)
else:
y_cur = y
explained_model.fit(x, y_cur)