本文整理匯總了Python中sklearn.linear_model方法的典型用法代碼示例。如果您正苦於以下問題:Python sklearn.linear_model方法的具體用法?Python sklearn.linear_model怎麽用?Python sklearn.linear_model使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn
的用法示例。
在下文中一共展示了sklearn.linear_model方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def __init__(self, describer, regressor="LinearRegression", **kwargs):
"""
Args:
describer (Describer): Describer to convert structure objects
to descriptors.
regressor (str): Name of LinearModel from sklearn.linear_model.
Default to "LinearRegression", i.e., ordinary least squares.
kwargs: kwargs to be passed to regressor.
"""
self.describer = describer
self.regressor = regressor
self.kwargs = kwargs
import sklearn.linear_model as lm
lr = getattr(lm, regressor)
self.model = lr(**kwargs)
self._xtrain = None
self._xtest = None
示例2: __init__
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def __init__(self,
test_indices=None,
estimator={'object': sklearn.linear_model.Lasso(alpha=20),
'fit': {}},
**kwargs):
self.test_indices = np.asarray(test_indices)
self.estimator = sklearn.clone(estimator['object'])
self.estimator_fit = estimator.get('fit', {})
self.models = [] # leave empty, fill in during `fit`
self.n_record = 0
self.record = []
self.n_series, self.n_features = 0, 0
self.px = kwargs.get('px', 0)
self.py = kwargs.get('py', 0)
示例3: test_regressormixin_score_multioutput
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def test_regressormixin_score_multioutput():
from sklearn.linear_model import LinearRegression
# no warnings when y_type is continuous
X = [[1], [2], [3]]
y = [1, 2, 3]
reg = LinearRegression().fit(X, y)
assert_no_warnings(reg.score, X, y)
# warn when y_type is continuous-multioutput
y = [[1, 2], [2, 3], [3, 4]]
reg = LinearRegression().fit(X, y)
msg = ("The default value of multioutput (not exposed in "
"score method) will change from 'variance_weighted' "
"to 'uniform_average' in 0.23 to keep consistent "
"with 'metrics.r2_score'. To specify the default "
"value manually and avoid the warning, please "
"either call 'metrics.r2_score' directly or make a "
"custom scorer with 'metrics.make_scorer' (the "
"built-in scorer 'r2' uses "
"multioutput='uniform_average').")
assert_warns_message(FutureWarning, msg, reg.score, X, y)
示例4: train_linreg_model
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def train_linreg_model(alpha, l1r, learn_options, fold, X, y, y_all):
'''
fold is something like train_inner (boolean array specifying what is in the fold)
'''
if learn_options["penalty"] == "L2":
clf = sklearn.linear_model.Ridge(alpha=alpha, fit_intercept=learn_options["fit_intercept"], normalize=learn_options['normalize_features'], copy_X=True, max_iter=None, tol=0.001, solver='auto')
weights = get_weights(learn_options, fold, y, y_all)
clf.fit(X[fold], y[fold], sample_weight=weights)
elif learn_options["penalty"] == 'EN' or learn_options["penalty"] == 'L1':
if learn_options["loss"] == "squared":
clf = sklearn.linear_model.ElasticNet(alpha=alpha, l1_ratio=l1r, fit_intercept=learn_options["fit_intercept"], normalize=learn_options['normalize_features'], max_iter=3000)
elif learn_options["loss"] == "huber":
clf = sklearn.linear_model.SGDRegressor('huber', epsilon=0.7, alpha=alpha,
l1_ratio=l1r, fit_intercept=learn_options["fit_intercept"], n_iter=10,
penalty='elasticnet', shuffle=True, normalize=learn_options['normalize_features'])
clf.fit(X[fold], y[fold])
return clf
示例5: test_scikit_learn
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def test_scikit_learn(selenium_standalone, request):
selenium = selenium_standalone
if selenium.browser == "chrome":
request.applymarker(pytest.mark.xfail(run=False, reason="chrome not supported"))
selenium.load_package("scikit-learn")
assert (
selenium.run(
"""
import numpy as np
import sklearn
from sklearn.linear_model import LogisticRegression
rng = np.random.RandomState(42)
X = rng.rand(100, 20)
y = rng.randint(5, size=100)
estimator = LogisticRegression(solver='liblinear')
estimator.fit(X, y)
print(estimator.predict(X))
estimator.score(X, y)
"""
)
> 0
)
示例6: test_monkey_patching
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def test_monkey_patching(self):
_tokens = daal4py.sklearn.sklearn_patch_names()
self.assertTrue(isinstance(_tokens, list) and len(_tokens) > 0)
for t in _tokens:
daal4py.sklearn.unpatch_sklearn(t)
for t in _tokens:
daal4py.sklearn.patch_sklearn(t)
import sklearn
for a in [(sklearn.decomposition, 'PCA'),
(sklearn.linear_model, 'Ridge'),
(sklearn.linear_model, 'LinearRegression'),
(sklearn.cluster, 'KMeans'),
(sklearn.svm, 'SVC'),]:
class_module = getattr(a[0], a[1]).__module__
self.assertTrue(class_module.startswith('daal4py'))
示例7: LinearModel
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def LinearModel(X_train, y_train, X_val, y_val):
regr = linear_model.LinearRegression(n_jobs=int(0.8*n_cores)).fit(X_train, y_train)
y_pred = regr.predict(X_val)
# print('--------- For Model: LinearRegression --------- \n')
# print('Coefficients: \n', regr.coef_)
print("Mean squared error: %.2f" % mean_squared_error(y_val, y_pred))
print("R2: ", sklearn.metrics.r2_score(y_val, y_pred))
# =============================================================================
# plt.scatter(y_val, y_pred/y_val, color='black')
# # plt.plot(x, y_pred, color='blue', linewidth=3)
# plt.title('Linear Model Baseline')
# plt.xlabel('$y_{test}$')
# plt.ylabel('$y_{predicted}/y_{test}$')
# plt.savefig('Linear Model Baseline.png', bbox_inches='tight')
# =============================================================================
return
示例8: __init__
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def __init__(self, to_path):
self.to_path = to_path
self.boards = []
self.moves = []
self.scores = []
self.sketches = [FJL((6 * 2 * 64)**2, 10000)
# , FJL(6*2*64*1000, 1000)
]
self.move_model = sklearn.linear_model.SGDClassifier(loss='log', n_jobs=8
)
# , max_iter=100, tol=.01)
示例9: done
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def done(self):
print('Caching data to games.cached')
joblib.dump((self.boards, self.moves, self.scores), 'games.cached')
n = len(self.boards)
print(f'Got {n} examples')
p = int(n * .8)
print('Training move model')
#move_clf = self.move_model.partial_fit(self.boards[:p], self.moves[:p], classes=range(64**2))
move_clf = self.move_model.fit(self.boards[:p], self.moves[:p]
# , classes=range(64**2)
)
test = move_clf.score(self.boards[p:], self.moves[p:])
# clf = sklearn.linear_model.LogisticRegression(
# solver='saga', multi_class='auto', verbose=1)
print(f'Test score: {test}')
print('Training score model.')
model = sklearn.linear_model.LinearRegression(n_jobs=8)
score_clf = model.fit(self.boards[:p], self.scores[:p])
test = score_clf.score(self.boards[p:], self.scores[p:])
print(f'Test score: {test}')
joblib.dump(Model(move_clf, score_clf, self.sketches), self.to_path)
print(f'Saved model as {self.to_path}')
示例10: init_classifier_impl
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def init_classifier_impl(field_code: str, init_script: str):
if init_script is not None:
init_script = init_script.strip()
if not init_script:
from sklearn import tree as sklearn_tree
return sklearn_tree.DecisionTreeClassifier()
from sklearn import tree as sklearn_tree
from sklearn import neural_network as sklearn_neural_network
from sklearn import neighbors as sklearn_neighbors
from sklearn import svm as sklearn_svm
from sklearn import gaussian_process as sklearn_gaussian_process
from sklearn.gaussian_process import kernels as sklearn_gaussian_process_kernels
from sklearn import ensemble as sklearn_ensemble
from sklearn import naive_bayes as sklearn_naive_bayes
from sklearn import discriminant_analysis as sklearn_discriminant_analysis
from sklearn import linear_model as sklearn_linear_model
eval_locals = {
'sklearn_linear_model': sklearn_linear_model,
'sklearn_tree': sklearn_tree,
'sklearn_neural_network': sklearn_neural_network,
'sklearn_neighbors': sklearn_neighbors,
'sklearn_svm': sklearn_svm,
'sklearn_gaussian_process': sklearn_gaussian_process,
'sklearn_gaussian_process_kernels': sklearn_gaussian_process_kernels,
'sklearn_ensemble': sklearn_ensemble,
'sklearn_naive_bayes': sklearn_naive_bayes,
'sklearn_discriminant_analysis': sklearn_discriminant_analysis
}
return eval_script('classifier init script of field {0}'.format(field_code), init_script, eval_locals)
示例11: run
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def run(self):
df_train = self.input().load()
if self.model=='ols':
model = sklearn.linear_model.LogisticRegression()
elif self.model=='svm':
model = sklearn.svm.SVC()
else:
raise ValueError('invalid model selection')
model.fit(df_train.iloc[:,:-1], df_train['y'])
self.save(model)
# Check task dependencies and their execution status
示例12: simple_lr
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def simple_lr(self):
clf = sklearn.linear_model.LogisticRegressionCV()
clf.fit(self.X.T, np.squeeze(self.Y))
print self.X.T.shape
plot_decision_boundary(lambda x: clf.predict(x), self.X, np.squeeze(self.Y))
plt.title("Logistic Regression")
plt.show()
LR_predictions = clf.predict(self.X.T)
print ('Accuracy of logistic regression: %d ' % float(
(np.dot(self.Y, LR_predictions) + np.dot(1 - self.Y, 1 - LR_predictions)) / float(self.Y.size) * 100) +
'% ' + "(percentage of correctly labelled datapoints)")
return self
示例13: linear_stacking
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def linear_stacking(y_train, X_train, X_test):
clf = sklearn.linear_model.LinearRegression()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
return y_pred.flatten()
示例14: LinearModel
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def LinearModel(X_train, y_train, X_val, y_val):
regr = linear_model.LinearRegression(n_jobs=int(0.8*n_cores)).fit(X_train, y_train)
print_evaluation_metrics(regr, "linear model", X_val, y_val.values.ravel())
print_evaluation_metrics2(regr, "linear model", X_train, y_train.values.ravel())
return
示例15: test_log_loss_scoring
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def test_log_loss_scoring(y):
# a_scorer = sklearn.metrics.get_scorer('neg_log_loss')
# b_scorer = dask_ml.metrics.get_scorer('neg_log_loss')
X = da.random.uniform(size=(4, 2), chunks=2)
labels = np.unique(y)
y = da.from_array(np.array(y), chunks=2)
a_scorer = sklearn.metrics.make_scorer(
sklearn.metrics.log_loss,
greater_is_better=False,
needs_proba=True,
labels=labels,
)
b_scorer = sklearn.metrics.make_scorer(
dask_ml.metrics.log_loss,
greater_is_better=False,
needs_proba=True,
labels=labels,
)
clf = dask_ml.wrappers.ParallelPostFit(
sklearn.linear_model.LogisticRegression(
n_jobs=1, solver="lbfgs", multi_class="auto"
)
)
clf.fit(*dask.compute(X, y))
result = b_scorer(clf, X, y)
expected = a_scorer(clf, *dask.compute(X, y))
assert_eq(result, expected)