當前位置: 首頁>>代碼示例>>Python>>正文


Python sklearn.linear_model方法代碼示例

本文整理匯總了Python中sklearn.linear_model方法的典型用法代碼示例。如果您正苦於以下問題:Python sklearn.linear_model方法的具體用法?Python sklearn.linear_model怎麽用?Python sklearn.linear_model使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn的用法示例。


在下文中一共展示了sklearn.linear_model方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def __init__(self, describer, regressor="LinearRegression", **kwargs):
        """

        Args:
            describer (Describer): Describer to convert structure objects
                to descriptors.
            regressor (str): Name of LinearModel from sklearn.linear_model.
                Default to "LinearRegression", i.e., ordinary least squares.
            kwargs: kwargs to be passed to regressor.
        """
        self.describer = describer
        self.regressor = regressor
        self.kwargs = kwargs
        import sklearn.linear_model as lm
        lr = getattr(lm, regressor)
        self.model = lr(**kwargs)
        self._xtrain = None
        self._xtest = None 
開發者ID:materialsvirtuallab,項目名稱:mlearn,代碼行數:20,代碼來源:models.py

示例2: __init__

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def __init__(self,
                 test_indices=None,
                 estimator={'object': sklearn.linear_model.Lasso(alpha=20),
                            'fit': {}},
                 **kwargs):
        self.test_indices = np.asarray(test_indices)
        self.estimator = sklearn.clone(estimator['object'])
        self.estimator_fit = estimator.get('fit', {})
        self.models = []  # leave empty, fill in during `fit`

        self.n_record = 0
        self.record = []

        self.n_series, self.n_features = 0, 0
        self.px = kwargs.get('px', 0)
        self.py = kwargs.get('py', 0) 
開發者ID:ceholden,項目名稱:yatsm,代碼行數:18,代碼來源:yatsm.py

示例3: test_regressormixin_score_multioutput

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def test_regressormixin_score_multioutput():
    from sklearn.linear_model import LinearRegression
    # no warnings when y_type is continuous
    X = [[1], [2], [3]]
    y = [1, 2, 3]
    reg = LinearRegression().fit(X, y)
    assert_no_warnings(reg.score, X, y)
    # warn when y_type is continuous-multioutput
    y = [[1, 2], [2, 3], [3, 4]]
    reg = LinearRegression().fit(X, y)
    msg = ("The default value of multioutput (not exposed in "
           "score method) will change from 'variance_weighted' "
           "to 'uniform_average' in 0.23 to keep consistent "
           "with 'metrics.r2_score'. To specify the default "
           "value manually and avoid the warning, please "
           "either call 'metrics.r2_score' directly or make a "
           "custom scorer with 'metrics.make_scorer' (the "
           "built-in scorer 'r2' uses "
           "multioutput='uniform_average').")
    assert_warns_message(FutureWarning, msg, reg.score, X, y) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:22,代碼來源:test_base.py

示例4: train_linreg_model

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def train_linreg_model(alpha, l1r, learn_options, fold, X, y, y_all):
    '''
    fold is something like train_inner (boolean array specifying what is in the fold)
    '''
    if learn_options["penalty"] == "L2":
        clf = sklearn.linear_model.Ridge(alpha=alpha, fit_intercept=learn_options["fit_intercept"], normalize=learn_options['normalize_features'], copy_X=True, max_iter=None, tol=0.001, solver='auto')
        weights = get_weights(learn_options, fold, y, y_all)
        clf.fit(X[fold], y[fold], sample_weight=weights)
    elif learn_options["penalty"] == 'EN' or learn_options["penalty"] == 'L1':
        if learn_options["loss"] == "squared":
            clf = sklearn.linear_model.ElasticNet(alpha=alpha, l1_ratio=l1r, fit_intercept=learn_options["fit_intercept"], normalize=learn_options['normalize_features'], max_iter=3000)
        elif learn_options["loss"] == "huber":
            clf = sklearn.linear_model.SGDRegressor('huber', epsilon=0.7, alpha=alpha,
                                                    l1_ratio=l1r, fit_intercept=learn_options["fit_intercept"], n_iter=10,
                                                    penalty='elasticnet', shuffle=True, normalize=learn_options['normalize_features'])
        clf.fit(X[fold], y[fold])
    return clf 
開發者ID:MicrosoftResearch,項目名稱:Azimuth,代碼行數:19,代碼來源:regression.py

示例5: test_scikit_learn

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def test_scikit_learn(selenium_standalone, request):
    selenium = selenium_standalone
    if selenium.browser == "chrome":
        request.applymarker(pytest.mark.xfail(run=False, reason="chrome not supported"))
    selenium.load_package("scikit-learn")
    assert (
        selenium.run(
            """
        import numpy as np
        import sklearn
        from sklearn.linear_model import LogisticRegression

        rng = np.random.RandomState(42)
        X = rng.rand(100, 20)
        y = rng.randint(5, size=100)

        estimator = LogisticRegression(solver='liblinear')
        estimator.fit(X, y)
        print(estimator.predict(X))
        estimator.score(X, y)
        """
        )
        > 0
    ) 
開發者ID:iodide-project,項目名稱:pyodide,代碼行數:26,代碼來源:test_scikit-learn.py

示例6: test_monkey_patching

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def test_monkey_patching(self):
        _tokens = daal4py.sklearn.sklearn_patch_names()
        self.assertTrue(isinstance(_tokens, list) and len(_tokens) > 0)
        for t in _tokens:
            daal4py.sklearn.unpatch_sklearn(t)
        for t in _tokens:
            daal4py.sklearn.patch_sklearn(t)

        import sklearn
        for a in [(sklearn.decomposition, 'PCA'),
                  (sklearn.linear_model, 'Ridge'),
                  (sklearn.linear_model, 'LinearRegression'),
                  (sklearn.cluster, 'KMeans'),
                  (sklearn.svm, 'SVC'),]:
            class_module = getattr(a[0], a[1]).__module__
            self.assertTrue(class_module.startswith('daal4py')) 
開發者ID:IntelPython,項目名稱:daal4py,代碼行數:18,代碼來源:test_monkeypatch.py

示例7: LinearModel

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def LinearModel(X_train, y_train, X_val, y_val):
    regr = linear_model.LinearRegression(n_jobs=int(0.8*n_cores)).fit(X_train, y_train)
    y_pred = regr.predict(X_val)

    # print('--------- For Model: LinearRegression --------- \n')
    # print('Coefficients: \n', regr.coef_)
    print("Mean squared error: %.2f" % mean_squared_error(y_val, y_pred))
    print("R2: ", sklearn.metrics.r2_score(y_val, y_pred))

# =============================================================================
#     plt.scatter(y_val, y_pred/y_val, color='black')
#     # plt.plot(x, y_pred, color='blue', linewidth=3)
#     plt.title('Linear Model Baseline')
#     plt.xlabel('$y_{test}$')
#     plt.ylabel('$y_{predicted}/y_{test}$')
#     plt.savefig('Linear Model Baseline.png', bbox_inches='tight')
# =============================================================================
    
    return 
開發者ID:PouyaREZ,項目名稱:AirBnbPricePrediction,代碼行數:21,代碼來源:baselines.py

示例8: __init__

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def __init__(self, to_path):
        self.to_path = to_path
        self.boards = []
        self.moves = []
        self.scores = []
        self.sketches = [FJL((6 * 2 * 64)**2, 10000)
                         # , FJL(6*2*64*1000, 1000)
                         ]

        self.move_model = sklearn.linear_model.SGDClassifier(loss='log', n_jobs=8
                                                             )
        # , max_iter=100, tol=.01) 
開發者ID:thomasahle,項目名稱:fastchess,代碼行數:14,代碼來源:tensorsketch.py

示例9: done

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def done(self):
        print('Caching data to games.cached')
        joblib.dump((self.boards, self.moves, self.scores), 'games.cached')

        n = len(self.boards)
        print(f'Got {n} examples')
        p = int(n * .8)

        print('Training move model')
        #move_clf = self.move_model.partial_fit(self.boards[:p], self.moves[:p], classes=range(64**2))
        move_clf = self.move_model.fit(self.boards[:p], self.moves[:p]
                                       # , classes=range(64**2)
                                       )
        test = move_clf.score(self.boards[p:], self.moves[p:])
        # clf = sklearn.linear_model.LogisticRegression(
        # solver='saga', multi_class='auto', verbose=1)
        print(f'Test score: {test}')

        print('Training score model.')
        model = sklearn.linear_model.LinearRegression(n_jobs=8)
        score_clf = model.fit(self.boards[:p], self.scores[:p])
        test = score_clf.score(self.boards[p:], self.scores[p:])
        print(f'Test score: {test}')

        joblib.dump(Model(move_clf, score_clf, self.sketches), self.to_path)
        print(f'Saved model as {self.to_path}') 
開發者ID:thomasahle,項目名稱:fastchess,代碼行數:28,代碼來源:tensorsketch.py

示例10: init_classifier_impl

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def init_classifier_impl(field_code: str, init_script: str):
    if init_script is not None:
        init_script = init_script.strip()

    if not init_script:
        from sklearn import tree as sklearn_tree
        return sklearn_tree.DecisionTreeClassifier()

    from sklearn import tree as sklearn_tree
    from sklearn import neural_network as sklearn_neural_network
    from sklearn import neighbors as sklearn_neighbors
    from sklearn import svm as sklearn_svm
    from sklearn import gaussian_process as sklearn_gaussian_process
    from sklearn.gaussian_process import kernels as sklearn_gaussian_process_kernels
    from sklearn import ensemble as sklearn_ensemble
    from sklearn import naive_bayes as sklearn_naive_bayes
    from sklearn import discriminant_analysis as sklearn_discriminant_analysis
    from sklearn import linear_model as sklearn_linear_model

    eval_locals = {
        'sklearn_linear_model': sklearn_linear_model,
        'sklearn_tree': sklearn_tree,
        'sklearn_neural_network': sklearn_neural_network,
        'sklearn_neighbors': sklearn_neighbors,
        'sklearn_svm': sklearn_svm,
        'sklearn_gaussian_process': sklearn_gaussian_process,
        'sklearn_gaussian_process_kernels': sklearn_gaussian_process_kernels,
        'sklearn_ensemble': sklearn_ensemble,
        'sklearn_naive_bayes': sklearn_naive_bayes,
        'sklearn_discriminant_analysis': sklearn_discriminant_analysis
    }
    return eval_script('classifier init script of field {0}'.format(field_code), init_script, eval_locals) 
開發者ID:LexPredict,項目名稱:lexpredict-contraxsuite,代碼行數:34,代碼來源:field_based_ml_field_detection.py

示例11: run

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def run(self):
        df_train = self.input().load()
        if self.model=='ols':
            model = sklearn.linear_model.LogisticRegression()
        elif self.model=='svm':
            model = sklearn.svm.SVC()
        else:
            raise ValueError('invalid model selection')
        model.fit(df_train.iloc[:,:-1], df_train['y'])
        self.save(model)

# Check task dependencies and their execution status 
開發者ID:d6t,項目名稱:d6tflow,代碼行數:14,代碼來源:example.py

示例12: simple_lr

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def simple_lr(self):
        clf = sklearn.linear_model.LogisticRegressionCV()
        clf.fit(self.X.T, np.squeeze(self.Y))
        print self.X.T.shape
        plot_decision_boundary(lambda x: clf.predict(x), self.X, np.squeeze(self.Y))
        plt.title("Logistic Regression")
        plt.show()
        LR_predictions = clf.predict(self.X.T)
        print ('Accuracy of logistic regression: %d ' % float(
            (np.dot(self.Y, LR_predictions) + np.dot(1 - self.Y, 1 - LR_predictions)) / float(self.Y.size) * 100) +
               '% ' + "(percentage of correctly labelled datapoints)")
        return self 
開發者ID:Jinkeycode,項目名稱:DeeplearningAI_AndrewNg,代碼行數:14,代碼來源:main.py

示例13: linear_stacking

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def linear_stacking(y_train, X_train, X_test):
    clf = sklearn.linear_model.LinearRegression()
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)
    return y_pred.flatten() 
開發者ID:MicrosoftResearch,項目名稱:Azimuth,代碼行數:7,代碼來源:ensembles.py

示例14: LinearModel

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def LinearModel(X_train, y_train, X_val, y_val):
    regr = linear_model.LinearRegression(n_jobs=int(0.8*n_cores)).fit(X_train, y_train)
    print_evaluation_metrics(regr, "linear model", X_val, y_val.values.ravel())
    print_evaluation_metrics2(regr, "linear model", X_train, y_train.values.ravel())

    return 
開發者ID:PouyaREZ,項目名稱:AirBnbPricePrediction,代碼行數:8,代碼來源:run_models.py

示例15: test_log_loss_scoring

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import linear_model [as 別名]
def test_log_loss_scoring(y):
    # a_scorer = sklearn.metrics.get_scorer('neg_log_loss')
    # b_scorer = dask_ml.metrics.get_scorer('neg_log_loss')
    X = da.random.uniform(size=(4, 2), chunks=2)
    labels = np.unique(y)
    y = da.from_array(np.array(y), chunks=2)

    a_scorer = sklearn.metrics.make_scorer(
        sklearn.metrics.log_loss,
        greater_is_better=False,
        needs_proba=True,
        labels=labels,
    )
    b_scorer = sklearn.metrics.make_scorer(
        dask_ml.metrics.log_loss,
        greater_is_better=False,
        needs_proba=True,
        labels=labels,
    )

    clf = dask_ml.wrappers.ParallelPostFit(
        sklearn.linear_model.LogisticRegression(
            n_jobs=1, solver="lbfgs", multi_class="auto"
        )
    )
    clf.fit(*dask.compute(X, y))

    result = b_scorer(clf, X, y)
    expected = a_scorer(clf, *dask.compute(X, y))

    assert_eq(result, expected) 
開發者ID:dask,項目名稱:dask-ml,代碼行數:33,代碼來源:test_metrics.py


注:本文中的sklearn.linear_model方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。