本文整理匯總了Python中sklearn.linear_model.base.LinearRegression方法的典型用法代碼示例。如果您正苦於以下問題:Python base.LinearRegression方法的具體用法?Python base.LinearRegression怎麽用?Python base.LinearRegression使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.linear_model.base
的用法示例。
在下文中一共展示了base.LinearRegression方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_raises_value_error_if_sample_weights_greater_than_1d
# 需要導入模塊: from sklearn.linear_model import base [as 別名]
# 或者: from sklearn.linear_model.base import LinearRegression [as 別名]
def test_raises_value_error_if_sample_weights_greater_than_1d():
# Sample weights must be either scalar or 1D
n_sampless = [2, 3]
n_featuress = [3, 2]
for n_samples, n_features in zip(n_sampless, n_featuress):
X = rng.randn(n_samples, n_features)
y = rng.randn(n_samples)
sample_weights_OK = rng.randn(n_samples) ** 2 + 1
sample_weights_OK_1 = 1.
sample_weights_OK_2 = 2.
reg = LinearRegression()
# make sure the "OK" sample weights actually work
reg.fit(X, y, sample_weights_OK)
reg.fit(X, y, sample_weights_OK_1)
reg.fit(X, y, sample_weights_OK_2)
示例2: test_linear_regression
# 需要導入模塊: from sklearn.linear_model import base [as 別名]
# 或者: from sklearn.linear_model.base import LinearRegression [as 別名]
def test_linear_regression():
# Test LinearRegression on a simple dataset.
# a simple dataset
X = [[1], [2]]
Y = [1, 2]
reg = LinearRegression()
reg.fit(X, Y)
assert_array_almost_equal(reg.coef_, [1])
assert_array_almost_equal(reg.intercept_, [0])
assert_array_almost_equal(reg.predict(X), [1, 2])
# test it also for degenerate input
X = [[1]]
Y = [0]
reg = LinearRegression()
reg.fit(X, Y)
assert_array_almost_equal(reg.coef_, [0])
assert_array_almost_equal(reg.intercept_, [0])
assert_array_almost_equal(reg.predict(X), [0])
示例3: test_fit_intercept
# 需要導入模塊: from sklearn.linear_model import base [as 別名]
# 或者: from sklearn.linear_model.base import LinearRegression [as 別名]
def test_fit_intercept():
# Test assertions on betas shape.
X2 = np.array([[0.38349978, 0.61650022],
[0.58853682, 0.41146318]])
X3 = np.array([[0.27677969, 0.70693172, 0.01628859],
[0.08385139, 0.20692515, 0.70922346]])
y = np.array([1, 1])
lr2_without_intercept = LinearRegression(fit_intercept=False).fit(X2, y)
lr2_with_intercept = LinearRegression(fit_intercept=True).fit(X2, y)
lr3_without_intercept = LinearRegression(fit_intercept=False).fit(X3, y)
lr3_with_intercept = LinearRegression(fit_intercept=True).fit(X3, y)
assert_equal(lr2_with_intercept.coef_.shape,
lr2_without_intercept.coef_.shape)
assert_equal(lr3_with_intercept.coef_.shape,
lr3_without_intercept.coef_.shape)
assert_equal(lr2_without_intercept.coef_.ndim,
lr3_without_intercept.coef_.ndim)
示例4: test_ridge_vs_lstsq
# 需要導入模塊: from sklearn.linear_model import base [as 別名]
# 或者: from sklearn.linear_model.base import LinearRegression [as 別名]
def test_ridge_vs_lstsq():
# On alpha=0., Ridge and OLS yield the same solution.
rng = np.random.RandomState(0)
# we need more samples than features
n_samples, n_features = 5, 4
y = rng.randn(n_samples)
X = rng.randn(n_samples, n_features)
ridge = Ridge(alpha=0., fit_intercept=False)
ols = LinearRegression(fit_intercept=False)
ridge.fit(X, y)
ols.fit(X, y)
assert_almost_equal(ridge.coef_, ols.coef_)
ridge.fit(X, y)
ols.fit(X, y)
assert_almost_equal(ridge.coef_, ols.coef_)
示例5: test_intercept_flag
# 需要導入模塊: from sklearn.linear_model import base [as 別名]
# 或者: from sklearn.linear_model.base import LinearRegression [as 別名]
def test_intercept_flag(rows=10, columns=9):
inout = get_random_array(rows, columns)
test_overfitting(rows, columns)
x = inout[0]
y = inout[1]
ntX = HomogenNumericTable(x)
ntY = HomogenNumericTable(y)
lr_train = linear_training.Batch()
lr_train.input.set(linear_training.data, ntX)
lr_train.input.set(linear_training.dependentVariables, ntY)
result = lr_train.compute()
model = result.get(linear_training.model)
beta_coeff = model.getBeta()
np_beta = getNumpyArray(beta_coeff)
daal_intercept = np_beta[0,0]
from sklearn.linear_model.base import LinearRegression as ScikitLinearRegression
regression = ScikitLinearRegression()
regression.fit(x, y)
scikit_intercept = regression.intercept_
assert_array_almost_equal(scikit_intercept, [daal_intercept])
示例6: test_linear_regression_sample_weights
# 需要導入模塊: from sklearn.linear_model import base [as 別名]
# 或者: from sklearn.linear_model.base import LinearRegression [as 別名]
def test_linear_regression_sample_weights():
# TODO: loop over sparse data as well
rng = np.random.RandomState(0)
# It would not work with under-determined systems
for n_samples, n_features in ((6, 5), ):
y = rng.randn(n_samples)
X = rng.randn(n_samples, n_features)
sample_weight = 1.0 + rng.rand(n_samples)
for intercept in (True, False):
# LinearRegression with explicit sample_weight
reg = LinearRegression(fit_intercept=intercept)
reg.fit(X, y, sample_weight=sample_weight)
coefs1 = reg.coef_
inter1 = reg.intercept_
assert_equal(reg.coef_.shape, (X.shape[1], )) # sanity checks
assert_greater(reg.score(X, y), 0.5)
# Closed form of the weighted least square
# theta = (X^T W X)^(-1) * X^T W y
W = np.diag(sample_weight)
if intercept is False:
X_aug = X
else:
dummy_column = np.ones(shape=(n_samples, 1))
X_aug = np.concatenate((dummy_column, X), axis=1)
coefs2 = linalg.solve(X_aug.T.dot(W).dot(X_aug),
X_aug.T.dot(W).dot(y))
if intercept is False:
assert_array_almost_equal(coefs1, coefs2)
else:
assert_array_almost_equal(coefs1, coefs2[1:])
assert_almost_equal(inter1, coefs2[0])
示例7: test_linear_regression_sparse
# 需要導入模塊: from sklearn.linear_model import base [as 別名]
# 或者: from sklearn.linear_model.base import LinearRegression [as 別名]
def test_linear_regression_sparse(random_state=0):
# Test that linear regression also works with sparse data
random_state = check_random_state(random_state)
for i in range(10):
n = 100
X = sparse.eye(n, n)
beta = random_state.rand(n)
y = X * beta[:, np.newaxis]
ols = LinearRegression()
ols.fit(X, y.ravel())
assert_array_almost_equal(beta, ols.coef_ + ols.intercept_)
assert_array_almost_equal(ols.predict(X) - y.ravel(), 0)
示例8: test_linear_regression_multiple_outcome
# 需要導入模塊: from sklearn.linear_model import base [as 別名]
# 或者: from sklearn.linear_model.base import LinearRegression [as 別名]
def test_linear_regression_multiple_outcome(random_state=0):
# Test multiple-outcome linear regressions
X, y = make_regression(random_state=random_state)
Y = np.vstack((y, y)).T
n_features = X.shape[1]
reg = LinearRegression(fit_intercept=True)
reg.fit((X), Y)
assert_equal(reg.coef_.shape, (2, n_features))
Y_pred = reg.predict(X)
reg.fit(X, y)
y_pred = reg.predict(X)
assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3)
示例9: test_linear_regression_sparse_multiple_outcome
# 需要導入模塊: from sklearn.linear_model import base [as 別名]
# 或者: from sklearn.linear_model.base import LinearRegression [as 別名]
def test_linear_regression_sparse_multiple_outcome(random_state=0):
# Test multiple-outcome linear regressions with sparse data
random_state = check_random_state(random_state)
X, y = make_sparse_uncorrelated(random_state=random_state)
X = sparse.coo_matrix(X)
Y = np.vstack((y, y)).T
n_features = X.shape[1]
ols = LinearRegression()
ols.fit(X, Y)
assert_equal(ols.coef_.shape, (2, n_features))
Y_pred = ols.predict(X)
ols.fit(X, y.ravel())
y_pred = ols.predict(X)
assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3)
示例10: __init__
# 需要導入模塊: from sklearn.linear_model import base [as 別名]
# 或者: from sklearn.linear_model.base import LinearRegression [as 別名]
def __init__(self,
base_estimator: RegressorMixin = None,
**kwargs):
if base_estimator is not None:
self.base_estimator = clone(base_estimator)
else:
base_estimator = LinearRegression()
self.base_estimator = base_estimator
super().__init__(**kwargs)
示例11: __init__
# 需要導入模塊: from sklearn.linear_model import base [as 別名]
# 或者: from sklearn.linear_model.base import LinearRegression [as 別名]
def __init__(self, fit_intercept=True, normalize=False, copy_X=True, n_jobs=None):
self._hyperparams = {
'fit_intercept': fit_intercept,
'normalize': normalize,
'copy_X': copy_X,
'n_jobs': n_jobs}
self._wrapped_model = Op(**self._hyperparams)
示例12: _checkLM
# 需要導入模塊: from sklearn.linear_model import base [as 別名]
# 或者: from sklearn.linear_model.base import LinearRegression [as 別名]
def _checkLM(lm):
if isinstance(lm, (LinearModel, LinearRegression, SparseCoefMixin)):
return lm
raise ValueError("LM class " + _class_name(lm) + " is not supported")
示例13: get_scikit_prediction
# 需要導入模塊: from sklearn.linear_model import base [as 別名]
# 或者: from sklearn.linear_model.base import LinearRegression [as 別名]
def get_scikit_prediction(x=np.array([1,2,3]), y=np.array([1,2,3])):
from sklearn.linear_model.base import LinearRegression as ScikitLinearRegression
regression = ScikitLinearRegression()
regression.fit(x, y)
return regression.predict(x)
示例14: to_scikit
# 需要導入模塊: from sklearn.linear_model import base [as 別名]
# 或者: from sklearn.linear_model.base import LinearRegression [as 別名]
def to_scikit(self):
return self._to_scikit(LinearRegression)