本文整理匯總了Python中sklearn.linear_model.TheilSenRegressor方法的典型用法代碼示例。如果您正苦於以下問題:Python linear_model.TheilSenRegressor方法的具體用法?Python linear_model.TheilSenRegressor怎麽用?Python linear_model.TheilSenRegressor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.linear_model
的用法示例。
在下文中一共展示了linear_model.TheilSenRegressor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_theil_sen_1d
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import TheilSenRegressor [as 別名]
def test_theil_sen_1d():
X, y, w, c = gen_toy_problem_1d()
# Check that Least Squares fails
lstq = LinearRegression().fit(X, y)
assert_greater(np.abs(lstq.coef_ - w), 0.9)
# Check that Theil-Sen works
theil_sen = TheilSenRegressor(random_state=0).fit(X, y)
assert_array_almost_equal(theil_sen.coef_, w, 1)
assert_array_almost_equal(theil_sen.intercept_, c, 1)
示例2: test_theil_sen_1d_no_intercept
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import TheilSenRegressor [as 別名]
def test_theil_sen_1d_no_intercept():
X, y, w, c = gen_toy_problem_1d(intercept=False)
# Check that Least Squares fails
lstq = LinearRegression(fit_intercept=False).fit(X, y)
assert_greater(np.abs(lstq.coef_ - w - c), 0.5)
# Check that Theil-Sen works
theil_sen = TheilSenRegressor(fit_intercept=False,
random_state=0).fit(X, y)
assert_array_almost_equal(theil_sen.coef_, w + c, 1)
assert_almost_equal(theil_sen.intercept_, 0.)
示例3: test_theil_sen_2d
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import TheilSenRegressor [as 別名]
def test_theil_sen_2d():
X, y, w, c = gen_toy_problem_2d()
# Check that Least Squares fails
lstq = LinearRegression().fit(X, y)
assert_greater(norm(lstq.coef_ - w), 1.0)
# Check that Theil-Sen works
theil_sen = TheilSenRegressor(max_subpopulation=1e3,
random_state=0).fit(X, y)
assert_array_almost_equal(theil_sen.coef_, w, 1)
assert_array_almost_equal(theil_sen.intercept_, c, 1)
示例4: test_checksubparams_negative_subpopulation
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import TheilSenRegressor [as 別名]
def test_checksubparams_negative_subpopulation():
X, y, w, c = gen_toy_problem_1d()
theil_sen = TheilSenRegressor(max_subpopulation=-1, random_state=0)
assert_raises(ValueError, theil_sen.fit, X, y)
示例5: test_checksubparams_too_few_subsamples
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import TheilSenRegressor [as 別名]
def test_checksubparams_too_few_subsamples():
X, y, w, c = gen_toy_problem_1d()
theil_sen = TheilSenRegressor(n_subsamples=1, random_state=0)
assert_raises(ValueError, theil_sen.fit, X, y)
示例6: test_checksubparams_n_subsamples_if_less_samples_than_features
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import TheilSenRegressor [as 別名]
def test_checksubparams_n_subsamples_if_less_samples_than_features():
random_state = np.random.RandomState(0)
n_samples, n_features = 10, 20
X = random_state.normal(size=(n_samples, n_features))
y = random_state.normal(size=n_samples)
theil_sen = TheilSenRegressor(n_subsamples=9, random_state=0)
assert_raises(ValueError, theil_sen.fit, X, y)
示例7: test_subpopulation
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import TheilSenRegressor [as 別名]
def test_subpopulation():
X, y, w, c = gen_toy_problem_4d()
theil_sen = TheilSenRegressor(max_subpopulation=250,
random_state=0).fit(X, y)
assert_array_almost_equal(theil_sen.coef_, w, 1)
assert_array_almost_equal(theil_sen.intercept_, c, 1)
示例8: test_subsamples
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import TheilSenRegressor [as 別名]
def test_subsamples():
X, y, w, c = gen_toy_problem_4d()
theil_sen = TheilSenRegressor(n_subsamples=X.shape[0],
random_state=0).fit(X, y)
lstq = LinearRegression().fit(X, y)
# Check for exact the same results as Least Squares
assert_array_almost_equal(theil_sen.coef_, lstq.coef_, 9)
示例9: test_verbosity
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import TheilSenRegressor [as 別名]
def test_verbosity():
X, y, w, c = gen_toy_problem_1d()
# Check that Theil-Sen can be verbose
with no_stdout_stderr():
TheilSenRegressor(verbose=True, random_state=0).fit(X, y)
TheilSenRegressor(verbose=True,
max_subpopulation=10,
random_state=0).fit(X, y)
示例10: test_theil_sen_parallel
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import TheilSenRegressor [as 別名]
def test_theil_sen_parallel():
X, y, w, c = gen_toy_problem_2d()
# Check that Least Squares fails
lstq = LinearRegression().fit(X, y)
assert_greater(norm(lstq.coef_ - w), 1.0)
# Check that Theil-Sen works
theil_sen = TheilSenRegressor(n_jobs=4,
random_state=0,
max_subpopulation=2e3).fit(X, y)
assert_array_almost_equal(theil_sen.coef_, w, 1)
assert_array_almost_equal(theil_sen.intercept_, c, 1)
示例11: test_model_theilsen
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import TheilSenRegressor [as 別名]
def test_model_theilsen(self):
model, X = fit_regression_model(linear_model.TheilSenRegressor())
model_onnx = convert_sklearn(
model, "thiel-sen regressor",
[("input", FloatTensorType([None, X.shape[1]]))])
self.assertIsNotNone(model_onnx)
dump_data_and_model(
X,
model,
model_onnx,
basename="SklearnTheilSen-Dec4",
allow_failure="StrictVersion("
"onnxruntime.__version__)"
"<= StrictVersion('0.2.1')",
)
示例12: test_objectmapper
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import TheilSenRegressor [as 別名]
def test_objectmapper(self):
df = pdml.ModelFrame([])
self.assertIs(df.linear_model.ARDRegression, lm.ARDRegression)
self.assertIs(df.linear_model.BayesianRidge, lm.BayesianRidge)
self.assertIs(df.linear_model.ElasticNet, lm.ElasticNet)
self.assertIs(df.linear_model.ElasticNetCV, lm.ElasticNetCV)
self.assertIs(df.linear_model.HuberRegressor, lm.HuberRegressor)
self.assertIs(df.linear_model.Lars, lm.Lars)
self.assertIs(df.linear_model.LarsCV, lm.LarsCV)
self.assertIs(df.linear_model.Lasso, lm.Lasso)
self.assertIs(df.linear_model.LassoCV, lm.LassoCV)
self.assertIs(df.linear_model.LassoLars, lm.LassoLars)
self.assertIs(df.linear_model.LassoLarsCV, lm.LassoLarsCV)
self.assertIs(df.linear_model.LassoLarsIC, lm.LassoLarsIC)
self.assertIs(df.linear_model.LinearRegression, lm.LinearRegression)
self.assertIs(df.linear_model.LogisticRegression, lm.LogisticRegression)
self.assertIs(df.linear_model.LogisticRegressionCV, lm.LogisticRegressionCV)
self.assertIs(df.linear_model.MultiTaskLasso, lm.MultiTaskLasso)
self.assertIs(df.linear_model.MultiTaskElasticNet, lm.MultiTaskElasticNet)
self.assertIs(df.linear_model.MultiTaskLassoCV, lm.MultiTaskLassoCV)
self.assertIs(df.linear_model.MultiTaskElasticNetCV, lm.MultiTaskElasticNetCV)
self.assertIs(df.linear_model.OrthogonalMatchingPursuit, lm.OrthogonalMatchingPursuit)
self.assertIs(df.linear_model.OrthogonalMatchingPursuitCV, lm.OrthogonalMatchingPursuitCV)
self.assertIs(df.linear_model.PassiveAggressiveClassifier, lm.PassiveAggressiveClassifier)
self.assertIs(df.linear_model.PassiveAggressiveRegressor, lm.PassiveAggressiveRegressor)
self.assertIs(df.linear_model.Perceptron, lm.Perceptron)
self.assertIs(df.linear_model.RandomizedLasso, lm.RandomizedLasso)
self.assertIs(df.linear_model.RandomizedLogisticRegression, lm.RandomizedLogisticRegression)
self.assertIs(df.linear_model.RANSACRegressor, lm.RANSACRegressor)
self.assertIs(df.linear_model.Ridge, lm.Ridge)
self.assertIs(df.linear_model.RidgeClassifier, lm.RidgeClassifier)
self.assertIs(df.linear_model.RidgeClassifierCV, lm.RidgeClassifierCV)
self.assertIs(df.linear_model.RidgeCV, lm.RidgeCV)
self.assertIs(df.linear_model.SGDClassifier, lm.SGDClassifier)
self.assertIs(df.linear_model.SGDRegressor, lm.SGDRegressor)
self.assertIs(df.linear_model.TheilSenRegressor, lm.TheilSenRegressor)
示例13: test_checksubparams_negative_subpopulation
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import TheilSenRegressor [as 別名]
def test_checksubparams_negative_subpopulation():
X, y, w, c = gen_toy_problem_1d()
TheilSenRegressor(max_subpopulation=-1, random_state=0).fit(X, y)
示例14: test_checksubparams_too_few_subsamples
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import TheilSenRegressor [as 別名]
def test_checksubparams_too_few_subsamples():
X, y, w, c = gen_toy_problem_1d()
TheilSenRegressor(n_subsamples=1, random_state=0).fit(X, y)
示例15: test_checksubparams_n_subsamples_if_less_samples_than_features
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import TheilSenRegressor [as 別名]
def test_checksubparams_n_subsamples_if_less_samples_than_features():
random_state = np.random.RandomState(0)
n_samples, n_features = 10, 20
X = random_state.normal(size=(n_samples, n_features))
y = random_state.normal(size=n_samples)
TheilSenRegressor(n_subsamples=9, random_state=0).fit(X, y)