當前位置: 首頁>>代碼示例>>Python>>正文


Python linear_model.RidgeClassifierCV方法代碼示例

本文整理匯總了Python中sklearn.linear_model.RidgeClassifierCV方法的典型用法代碼示例。如果您正苦於以下問題:Python linear_model.RidgeClassifierCV方法的具體用法?Python linear_model.RidgeClassifierCV怎麽用?Python linear_model.RidgeClassifierCV使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.linear_model的用法示例。


在下文中一共展示了linear_model.RidgeClassifierCV方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_logistic_regression_coefs_l2

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifierCV [as 別名]
def get_logistic_regression_coefs_l2(self, category,
                                         clf=RidgeClassifierCV()):
        ''' Computes l2-penalized logistic regression score.
        Parameters
        ----------
        category : str
            category name to score

        category : str
            category name to score
        Returns
        -------
            (coefficient array, accuracy, majority class baseline accuracy)
        '''
        try:
            from sklearn.cross_validation import cross_val_predict
        except:
            from sklearn.model_selection import cross_val_predict
        y = self._get_mask_from_category(category)
        X = TfidfTransformer().fit_transform(self._X)
        clf.fit(X, y)
        y_hat = cross_val_predict(clf, X, y)
        acc, baseline = self._get_accuracy_and_baseline_accuracy(y, y_hat)
        return clf.coef_[0], acc, baseline 
開發者ID:JasonKessler,項目名稱:scattertext,代碼行數:26,代碼來源:TermDocMatrix.py

示例2: test_model_ridge_classifier_cv_binary

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifierCV [as 別名]
def test_model_ridge_classifier_cv_binary(self):
        model, X = fit_classification_model(
            linear_model.RidgeClassifierCV(), 2)
        model_onnx = convert_sklearn(
            model,
            "binary ridge classifier cv",
            [("input", FloatTensorType([None, X.shape[1]]))],
        )
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X,
            model,
            model_onnx,
            basename="SklearnRidgeClassifierCVBin",
            allow_failure="StrictVersion(onnxruntime.__version__)"
                          " <= StrictVersion('0.2.1')",
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:19,代碼來源:test_sklearn_glm_classifier_converter.py

示例3: test_model_ridge_classifier_cv_int

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifierCV [as 別名]
def test_model_ridge_classifier_cv_int(self):
        model, X = fit_classification_model(
            linear_model.RidgeClassifierCV(), 2, is_int=True)
        model_onnx = convert_sklearn(
            model,
            "binary ridge classifier cv",
            [("input", Int64TensorType([None, X.shape[1]]))],
        )
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X,
            model,
            model_onnx,
            basename="SklearnRidgeClassifierCVInt",
            allow_failure="StrictVersion(onnxruntime.__version__)"
                          " <= StrictVersion('0.2.1')",
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:19,代碼來源:test_sklearn_glm_classifier_converter.py

示例4: test_model_ridge_classifier_cv_bool

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifierCV [as 別名]
def test_model_ridge_classifier_cv_bool(self):
        model, X = fit_classification_model(
            linear_model.RidgeClassifierCV(), 2, is_bool=True)
        model_onnx = convert_sklearn(
            model,
            "binary ridge classifier cv",
            [("input", BooleanTensorType([None, X.shape[1]]))],
        )
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X,
            model,
            model_onnx,
            basename="SklearnRidgeClassifierCVBool",
            allow_failure="StrictVersion(onnxruntime.__version__)"
                          " <= StrictVersion('0.2.1')",
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:19,代碼來源:test_sklearn_glm_classifier_converter.py

示例5: test_model_ridge_classifier_cv_multi_class

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifierCV [as 別名]
def test_model_ridge_classifier_cv_multi_class(self):
        model, X = fit_classification_model(
            linear_model.RidgeClassifierCV(), 5)
        model_onnx = convert_sklearn(
            model,
            "multi-class ridge classifier cv",
            [("input", FloatTensorType([None, X.shape[1]]))],
        )
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X,
            model,
            model_onnx,
            basename="SklearnRidgeClassifierCVMulti",
            allow_failure="StrictVersion(onnxruntime.__version__)"
                          " <= StrictVersion('0.2.1')",
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:19,代碼來源:test_sklearn_glm_classifier_converter.py

示例6: test_model_ridge_classifier_cv_multilabel

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifierCV [as 別名]
def test_model_ridge_classifier_cv_multilabel(self):
        model, X_test = fit_multilabel_classification_model(
            linear_model.RidgeClassifierCV(random_state=42))
        model_onnx = convert_sklearn(
            model,
            "scikit-learn RidgeClassifierCV",
            [("input", FloatTensorType([None, X_test.shape[1]]))],
        )
        self.assertTrue(model_onnx is not None)
        dump_data_and_model(
            X_test,
            model,
            model_onnx,
            basename="SklearnRidgeClassifierCVMultiLabel",
            allow_failure="StrictVersion("
            "onnxruntime.__version__)<= StrictVersion('0.2.1')",
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:19,代碼來源:test_sklearn_glm_classifier_converter.py

示例7: test_rocket_on_gunpoint

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifierCV [as 別名]
def test_rocket_on_gunpoint():
    # load training data
    X_training, Y_training = load_gunpoint(split="train", return_X_y=True)

    # 'fit' ROCKET -> infer data dimensions, generate random kernels
    ROCKET = Rocket(num_kernels=10_000)
    ROCKET.fit(X_training)

    # transform training data
    X_training_transform = ROCKET.transform(X_training)

    # test shape of transformed training data -> (number of training
    # examples, num_kernels * 2)
    np.testing.assert_equal(X_training_transform.shape,
                            (len(X_training), 20_000))

    # fit classifier
    classifier = RidgeClassifierCV(alphas=np.logspace(-3, 3, 10),
                                   normalize=True)
    classifier.fit(X_training_transform, Y_training)

    # load test data
    X_test, Y_test = load_gunpoint(split="test", return_X_y=True)

    # transform test data
    X_test_transform = ROCKET.transform(X_test)

    # test shape of transformed test data -> (number of test examples,
    # num_kernels * 2)
    np.testing.assert_equal(X_test_transform.shape, (len(X_test), 20_000))

    # predict (alternatively: 'classifier.score(X_test_transform, Y_test)')
    predictions = classifier.predict(X_test_transform)
    accuracy = accuracy_score(predictions, Y_test)

    # test predictions (on Gunpoint, should be 100% accurate)
    assert accuracy == 1.0 
開發者ID:alan-turing-institute,項目名稱:sktime,代碼行數:39,代碼來源:test_Rocket.py

示例8: test_objectmapper

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifierCV [as 別名]
def test_objectmapper(self):
        df = pdml.ModelFrame([])
        self.assertIs(df.linear_model.ARDRegression, lm.ARDRegression)
        self.assertIs(df.linear_model.BayesianRidge, lm.BayesianRidge)
        self.assertIs(df.linear_model.ElasticNet, lm.ElasticNet)
        self.assertIs(df.linear_model.ElasticNetCV, lm.ElasticNetCV)

        self.assertIs(df.linear_model.HuberRegressor, lm.HuberRegressor)

        self.assertIs(df.linear_model.Lars, lm.Lars)
        self.assertIs(df.linear_model.LarsCV, lm.LarsCV)
        self.assertIs(df.linear_model.Lasso, lm.Lasso)
        self.assertIs(df.linear_model.LassoCV, lm.LassoCV)
        self.assertIs(df.linear_model.LassoLars, lm.LassoLars)
        self.assertIs(df.linear_model.LassoLarsCV, lm.LassoLarsCV)
        self.assertIs(df.linear_model.LassoLarsIC, lm.LassoLarsIC)

        self.assertIs(df.linear_model.LinearRegression, lm.LinearRegression)
        self.assertIs(df.linear_model.LogisticRegression, lm.LogisticRegression)
        self.assertIs(df.linear_model.LogisticRegressionCV, lm.LogisticRegressionCV)
        self.assertIs(df.linear_model.MultiTaskLasso, lm.MultiTaskLasso)
        self.assertIs(df.linear_model.MultiTaskElasticNet, lm.MultiTaskElasticNet)
        self.assertIs(df.linear_model.MultiTaskLassoCV, lm.MultiTaskLassoCV)
        self.assertIs(df.linear_model.MultiTaskElasticNetCV, lm.MultiTaskElasticNetCV)

        self.assertIs(df.linear_model.OrthogonalMatchingPursuit, lm.OrthogonalMatchingPursuit)
        self.assertIs(df.linear_model.OrthogonalMatchingPursuitCV, lm.OrthogonalMatchingPursuitCV)
        self.assertIs(df.linear_model.PassiveAggressiveClassifier, lm.PassiveAggressiveClassifier)
        self.assertIs(df.linear_model.PassiveAggressiveRegressor, lm.PassiveAggressiveRegressor)

        self.assertIs(df.linear_model.Perceptron, lm.Perceptron)
        self.assertIs(df.linear_model.RandomizedLasso, lm.RandomizedLasso)
        self.assertIs(df.linear_model.RandomizedLogisticRegression, lm.RandomizedLogisticRegression)
        self.assertIs(df.linear_model.RANSACRegressor, lm.RANSACRegressor)
        self.assertIs(df.linear_model.Ridge, lm.Ridge)
        self.assertIs(df.linear_model.RidgeClassifier, lm.RidgeClassifier)
        self.assertIs(df.linear_model.RidgeClassifierCV, lm.RidgeClassifierCV)
        self.assertIs(df.linear_model.RidgeCV, lm.RidgeCV)
        self.assertIs(df.linear_model.SGDClassifier, lm.SGDClassifier)
        self.assertIs(df.linear_model.SGDRegressor, lm.SGDRegressor)
        self.assertIs(df.linear_model.TheilSenRegressor, lm.TheilSenRegressor) 
開發者ID:pandas-ml,項目名稱:pandas-ml,代碼行數:43,代碼來源:test_linear_model.py

示例9: run

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifierCV [as 別名]
def run(training_data, test_data, num_runs = 10, num_kernels = 10_000):

    results = np.zeros(num_runs)
    timings = np.zeros([4, num_runs]) # training transform, test transform, training, test

    Y_training, X_training = training_data[:, 0].astype(np.int), training_data[:, 1:]
    Y_test, X_test = test_data[:, 0].astype(np.int), test_data[:, 1:]

    for i in range(num_runs):

        input_length = X_training.shape[1]
        kernels = generate_kernels(input_length, num_kernels)

        # -- transform training ------------------------------------------------

        time_a = time.perf_counter()
        X_training_transform = apply_kernels(X_training, kernels)
        time_b = time.perf_counter()
        timings[0, i] = time_b - time_a

        # -- transform test ----------------------------------------------------

        time_a = time.perf_counter()
        X_test_transform = apply_kernels(X_test, kernels)
        time_b = time.perf_counter()
        timings[1, i] = time_b - time_a

        # -- training ----------------------------------------------------------

        time_a = time.perf_counter()
        classifier = RidgeClassifierCV(alphas = 10 ** np.linspace(-3, 3, 10), normalize = True)
        classifier.fit(X_training_transform, Y_training)
        time_b = time.perf_counter()
        timings[2, i] = time_b - time_a

        # -- test --------------------------------------------------------------

        time_a = time.perf_counter()
        results[i] = classifier.score(X_test_transform, Y_test)
        time_b = time.perf_counter()
        timings[3, i] = time_b - time_a

    return results, timings

# == run through the bake off datasets ========================================= 
開發者ID:angus924,項目名稱:rocket,代碼行數:47,代碼來源:reproduce_experiments_bakeoff.py


注:本文中的sklearn.linear_model.RidgeClassifierCV方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。