本文整理匯總了Python中sklearn.linear_model.RidgeClassifier方法的典型用法代碼示例。如果您正苦於以下問題:Python linear_model.RidgeClassifier方法的具體用法?Python linear_model.RidgeClassifier怎麽用?Python linear_model.RidgeClassifier使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.linear_model
的用法示例。
在下文中一共展示了linear_model.RidgeClassifier方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_cv_partial_evaluate
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifier [as 別名]
def test_cv_partial_evaluate():
X, y = make_classification(n_samples=1024, n_features=20, class_sep=0.98, random_state=0)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0)
model = RidgeClassifier(alpha=1.0)
n = 0
def _fold_count(*args):
nonlocal n
n += 1
cv = Take(2, KFold(5))
pred_oof, pred_test, scores, _ = cross_validate(model, X_train, y_train, X_test, cv=cv, eval_func=roc_auc_score,
on_each_fold=_fold_count)
assert len(scores) == 2 + 1
assert scores[-1] >= 0.8 # overall auc
assert n == 2
示例2: test_07_ridge_classifier
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifier [as 別名]
def test_07_ridge_classifier(self):
print("\ntest 07 (Ridge Classifier) [multi-class]\n")
X, X_test, y, features, target, test_file = self.data_utility.get_data_for_multi_class_classification()
model = RidgeClassifier()
pipeline_obj = Pipeline([
("model", model)
])
pipeline_obj.fit(X,y)
file_name = 'test07sklearn.pmml'
skl_to_pmml(pipeline_obj, features, target, file_name)
model_name = self.adapa_utility.upload_to_zserver(file_name)
predictions, probabilities = self.adapa_utility.score_in_zserver(model_name, test_file)
model_pred = pipeline_obj.predict(X_test)
model_prob = model._predict_proba_lr(X_test)
self.assertEqual(self.adapa_utility.compare_predictions(predictions, model_pred), True)
self.assertEqual(self.adapa_utility.compare_probability(probabilities, model_prob), True)
示例3: test_08_ridge_classifier
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifier [as 別名]
def test_08_ridge_classifier(self):
print("\ntest 08 (Ridge Classifier) [binary-class]\n")
X, X_test, y, features, target, test_file = self.data_utility.get_data_for_binary_classification()
model = RidgeClassifier()
pipeline_obj = Pipeline([
("model", model)
])
pipeline_obj.fit(X,y)
file_name = 'test08sklearn.pmml'
skl_to_pmml(pipeline_obj, features, target, file_name)
model_name = self.adapa_utility.upload_to_zserver(file_name)
predictions, probabilities = self.adapa_utility.score_in_zserver(model_name, test_file)
model_pred = pipeline_obj.predict(X_test)
model_prob = model._predict_proba_lr(X_test)
self.assertEqual(self.adapa_utility.compare_predictions(predictions, model_pred), True)
self.assertEqual(self.adapa_utility.compare_probability(probabilities, model_prob), True)
示例4: test_model_ridge_classifier_binary
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifier [as 別名]
def test_model_ridge_classifier_binary(self):
model, X = fit_classification_model(linear_model.RidgeClassifier(), 2)
model_onnx = convert_sklearn(
model,
"binary ridge classifier",
[("input", FloatTensorType([None, X.shape[1]]))],
)
self.assertIsNotNone(model_onnx)
dump_data_and_model(
X,
model,
model_onnx,
basename="SklearnRidgeClassifierBin",
allow_failure="StrictVersion(onnxruntime.__version__)"
" <= StrictVersion('0.2.1')",
)
示例5: test_model_ridge_classifier_multi_class
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifier [as 別名]
def test_model_ridge_classifier_multi_class(self):
model, X = fit_classification_model(linear_model.RidgeClassifier(), 5)
model_onnx = convert_sklearn(
model,
"multi-class ridge classifier",
[("input", FloatTensorType([None, X.shape[1]]))],
)
self.assertIsNotNone(model_onnx)
dump_data_and_model(
X,
model,
model_onnx,
basename="SklearnRidgeClassifierMulti",
allow_failure="StrictVersion(onnxruntime.__version__)"
" <= StrictVersion('0.2.1')",
)
示例6: test_model_ridge_classifier_int
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifier [as 別名]
def test_model_ridge_classifier_int(self):
model, X = fit_classification_model(
linear_model.RidgeClassifier(), 5, is_int=True)
model_onnx = convert_sklearn(
model,
"multi-class ridge classifier",
[("input", Int64TensorType([None, X.shape[1]]))],
)
self.assertIsNotNone(model_onnx)
dump_data_and_model(
X,
model,
model_onnx,
basename="SklearnRidgeClassifierInt",
allow_failure="StrictVersion(onnxruntime.__version__)"
" <= StrictVersion('0.2.1')",
)
示例7: test_model_ridge_classifier_bool
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifier [as 別名]
def test_model_ridge_classifier_bool(self):
model, X = fit_classification_model(
linear_model.RidgeClassifier(), 4, is_bool=True)
model_onnx = convert_sklearn(
model,
"multi-class ridge classifier",
[("input", BooleanTensorType([None, X.shape[1]]))],
)
self.assertIsNotNone(model_onnx)
dump_data_and_model(
X,
model,
model_onnx,
basename="SklearnRidgeClassifierBool",
allow_failure="StrictVersion(onnxruntime.__version__)"
" <= StrictVersion('0.2.1')",
)
示例8: test_cv_sklean_binary
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifier [as 別名]
def test_cv_sklean_binary():
X, y = make_classification(n_samples=1024, n_features=20, class_sep=0.98, random_state=0)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0)
model = RidgeClassifier(alpha=1.0)
pred_oof, pred_test, scores, _ = cross_validate(model, X_train, y_train, X_test, cv=5, eval_func=roc_auc_score)
assert len(scores) == 5 + 1
assert scores[-1] >= 0.85 # overall auc
assert roc_auc_score(y_train, pred_oof) == scores[-1]
assert roc_auc_score(y_test, pred_test) >= 0.85 # test score
示例9: feature_selection
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifier [as 別名]
def feature_selection(matrix, labels, train_ind, fnum):
"""
matrix : feature matrix (num_subjects x num_features)
labels : ground truth labels (num_subjects x 1)
train_ind : indices of the training samples
fnum : size of the feature vector after feature selection
return:
x_data : feature matrix of lower dimension (num_subjects x fnum)
"""
estimator = RidgeClassifier()
selector = RFE(estimator, fnum, step=100, verbose=1)
featureX = matrix[train_ind, :]
featureY = labels[train_ind]
selector = selector.fit(featureX, featureY.ravel())
x_data = selector.transform(matrix)
print("Number of labeled samples %d" % len(train_ind))
print("Number of features selected %d" % x_data.shape[1])
return x_data
# Make sure each site is represented in the training set when selecting a subset of the training set
示例10: build_model
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifier [as 別名]
def build_model(hp):
model_type = hp.Choice('model_type', ['random_forest', 'ridge'])
if model_type == 'random_forest':
with hp.conditional_scope('model_type', 'random_forest'):
model = ensemble.RandomForestClassifier(
n_estimators=hp.Int('n_estimators', 10, 50, step=10),
max_depth=hp.Int('max_depth', 3, 10))
elif model_type == 'ridge':
with hp.conditional_scope('model_type', 'ridge'):
model = linear_model.RidgeClassifier(
alpha=hp.Float('alpha', 1e-3, 1, sampling='log'))
else:
raise ValueError('Unrecognized model_type')
return model
示例11: test_objectmapper
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifier [as 別名]
def test_objectmapper(self):
df = pdml.ModelFrame([])
self.assertIs(df.linear_model.ARDRegression, lm.ARDRegression)
self.assertIs(df.linear_model.BayesianRidge, lm.BayesianRidge)
self.assertIs(df.linear_model.ElasticNet, lm.ElasticNet)
self.assertIs(df.linear_model.ElasticNetCV, lm.ElasticNetCV)
self.assertIs(df.linear_model.HuberRegressor, lm.HuberRegressor)
self.assertIs(df.linear_model.Lars, lm.Lars)
self.assertIs(df.linear_model.LarsCV, lm.LarsCV)
self.assertIs(df.linear_model.Lasso, lm.Lasso)
self.assertIs(df.linear_model.LassoCV, lm.LassoCV)
self.assertIs(df.linear_model.LassoLars, lm.LassoLars)
self.assertIs(df.linear_model.LassoLarsCV, lm.LassoLarsCV)
self.assertIs(df.linear_model.LassoLarsIC, lm.LassoLarsIC)
self.assertIs(df.linear_model.LinearRegression, lm.LinearRegression)
self.assertIs(df.linear_model.LogisticRegression, lm.LogisticRegression)
self.assertIs(df.linear_model.LogisticRegressionCV, lm.LogisticRegressionCV)
self.assertIs(df.linear_model.MultiTaskLasso, lm.MultiTaskLasso)
self.assertIs(df.linear_model.MultiTaskElasticNet, lm.MultiTaskElasticNet)
self.assertIs(df.linear_model.MultiTaskLassoCV, lm.MultiTaskLassoCV)
self.assertIs(df.linear_model.MultiTaskElasticNetCV, lm.MultiTaskElasticNetCV)
self.assertIs(df.linear_model.OrthogonalMatchingPursuit, lm.OrthogonalMatchingPursuit)
self.assertIs(df.linear_model.OrthogonalMatchingPursuitCV, lm.OrthogonalMatchingPursuitCV)
self.assertIs(df.linear_model.PassiveAggressiveClassifier, lm.PassiveAggressiveClassifier)
self.assertIs(df.linear_model.PassiveAggressiveRegressor, lm.PassiveAggressiveRegressor)
self.assertIs(df.linear_model.Perceptron, lm.Perceptron)
self.assertIs(df.linear_model.RandomizedLasso, lm.RandomizedLasso)
self.assertIs(df.linear_model.RandomizedLogisticRegression, lm.RandomizedLogisticRegression)
self.assertIs(df.linear_model.RANSACRegressor, lm.RANSACRegressor)
self.assertIs(df.linear_model.Ridge, lm.Ridge)
self.assertIs(df.linear_model.RidgeClassifier, lm.RidgeClassifier)
self.assertIs(df.linear_model.RidgeClassifierCV, lm.RidgeClassifierCV)
self.assertIs(df.linear_model.RidgeCV, lm.RidgeCV)
self.assertIs(df.linear_model.SGDClassifier, lm.SGDClassifier)
self.assertIs(df.linear_model.SGDRegressor, lm.SGDRegressor)
self.assertIs(df.linear_model.TheilSenRegressor, lm.TheilSenRegressor)
示例12: test_no_predict_proba_attribute
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifier [as 別名]
def test_no_predict_proba_attribute():
with pytest.raises(AttributeError):
clf = CTClassifier(RidgeClassifier(), RidgeClassifier())
示例13: test_cross_val_predict_decision_function_shape
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifier [as 別名]
def test_cross_val_predict_decision_function_shape():
X, y = make_classification(n_classes=2, n_samples=50, random_state=0)
preds = cross_val_predict(LogisticRegression(), X, y,
method='decision_function')
assert_equal(preds.shape, (50,))
X, y = load_iris(return_X_y=True)
preds = cross_val_predict(LogisticRegression(), X, y,
method='decision_function')
assert_equal(preds.shape, (150, 3))
# This specifically tests imbalanced splits for binary
# classification with decision_function. This is only
# applicable to classifiers that can be fit on a single
# class.
X = X[:100]
y = y[:100]
assert_raise_message(ValueError,
'Only 1 class/es in training fold,'
' but 2 in overall dataset. This'
' is not supported for decision_function'
' with imbalanced folds. To fix '
'this, use a cross-validation technique '
'resulting in properly stratified folds',
cross_val_predict, RidgeClassifier(), X, y,
method='decision_function', cv=KFold(2))
X, y = load_digits(return_X_y=True)
est = SVC(kernel='linear', decision_function_shape='ovo')
preds = cross_val_predict(est,
X, y,
method='decision_function')
assert_equal(preds.shape, (1797, 45))
ind = np.argsort(y)
X, y = X[ind], y[ind]
assert_raises_regex(ValueError,
r'Output shape \(599L?, 21L?\) of decision_function '
r'does not match number of classes \(7\) in fold. '
'Irregular decision_function .*',
cross_val_predict, est, X, y,
cv=KFold(n_splits=3), method='decision_function')
示例14: test_sklearn_29
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifier [as 別名]
def test_sklearn_29(self):
iris = datasets.load_iris()
irisd = pd.DataFrame(iris.data, columns=iris.feature_names)
irisd['Species'] = iris.target
features = irisd.columns.drop('Species')
target = 'Species'
f_name = "ridge.pmml"
model = RidgeClassifier()
pipeline_obj = Pipeline([
("model", model)
])
pipeline_obj.fit(irisd[features], irisd[target])
skl_to_pmml(pipeline_obj, features, target, f_name)
pmml_obj = pml.parse(f_name, True)
segmentation = pmml_obj.MiningModel[0].Segmentation
# 1
self.assertEqual(os.path.isfile(f_name), True)
# 2
self.assertEqual(model.classes_.__len__() + 1, segmentation.Segment.__len__())
# 3
self.assertEqual(MULTIPLE_MODEL_METHOD.MODEL_CHAIN.value, segmentation.multipleModelMethod)
# 4
self.assertEqual(REGRESSION_NORMALIZATION_METHOD.SIMPLEMAX.value,
segmentation.Segment[-1].RegressionModel.normalizationMethod)
# 5
for i in range(model.classes_.__len__()):
self.assertEqual("{:.16f}".format(model.intercept_[i]), \
"{:.16f}".format(segmentation.Segment[i].RegressionModel.RegressionTable[0].intercept))
# 6
for model_coef, pmml_seg in zip(model.coef_, segmentation.Segment):
if int(pmml_seg.id) < 4:
num_predict = pmml_seg.RegressionModel.RegressionTable[0].NumericPredictor
for model_val, pmml_val in zip(model_coef, num_predict):
self.assertEqual("{:.16f}".format(model_val), "{:.16f}".format(pmml_val.coefficient))
# 7
self.assertEqual(REGRESSION_NORMALIZATION_METHOD.LOGISTIC.value,
pmml_obj.MiningModel[0].Segmentation.Segment[
1].RegressionModel.normalizationMethod)
示例15: test_cross_val_predict_decision_function_shape
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeClassifier [as 別名]
def test_cross_val_predict_decision_function_shape():
X, y = make_classification(n_classes=2, n_samples=50, random_state=0)
preds = cross_val_predict(LogisticRegression(), X, y,
method='decision_function')
assert_equal(preds.shape, (50,))
X, y = load_iris(return_X_y=True)
preds = cross_val_predict(LogisticRegression(), X, y,
method='decision_function')
assert_equal(preds.shape, (150, 3))
# This specifically tests imbalanced splits for binary
# classification with decision_function. This is only
# applicable to classifiers that can be fit on a single
# class.
X = X[:100]
y = y[:100]
assert_raise_message(ValueError,
'Only 1 class/es in training fold, this'
' is not supported for decision_function'
' with imbalanced folds. To fix '
'this, use a cross-validation technique '
'resulting in properly stratified folds',
cross_val_predict, RidgeClassifier(), X, y,
method='decision_function', cv=KFold(2))
X, y = load_digits(return_X_y=True)
est = SVC(kernel='linear', decision_function_shape='ovo')
preds = cross_val_predict(est,
X, y,
method='decision_function')
assert_equal(preds.shape, (1797, 45))
ind = np.argsort(y)
X, y = X[ind], y[ind]
assert_raises_regex(ValueError,
'Output shape \(599L?, 21L?\) of decision_function '
'does not match number of classes \(7\) in fold. '
'Irregular decision_function .*',
cross_val_predict, est, X, y,
cv=KFold(n_splits=3), method='decision_function')