當前位置: 首頁>>代碼示例>>Python>>正文


Python linear_model.RANSACRegressor方法代碼示例

本文整理匯總了Python中sklearn.linear_model.RANSACRegressor方法的典型用法代碼示例。如果您正苦於以下問題:Python linear_model.RANSACRegressor方法的具體用法?Python linear_model.RANSACRegressor怎麽用?Python linear_model.RANSACRegressor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.linear_model的用法示例。


在下文中一共展示了linear_model.RANSACRegressor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: ensure_many_models

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RANSACRegressor [as 別名]
def ensure_many_models(self):
        from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor
        from sklearn.neural_network import MLPRegressor
        from sklearn.linear_model import ElasticNet, RANSACRegressor, HuberRegressor, PassiveAggressiveRegressor
        from sklearn.neighbors import KNeighborsRegressor
        from sklearn.svm import SVR, LinearSVR

        import warnings
        from sklearn.exceptions import ConvergenceWarning
        warnings.filterwarnings('ignore', category=ConvergenceWarning)

        for learner in [GradientBoostingRegressor, RandomForestRegressor, MLPRegressor,
                        ElasticNet, RANSACRegressor, HuberRegressor, PassiveAggressiveRegressor,
                        KNeighborsRegressor, SVR, LinearSVR]:
            learner = learner()
            learner_name = str(learner).split("(", maxsplit=1)[0]
            with self.subTest("Test fit using {learner}".format(learner=learner_name)):
                model = self.estimator.__class__(learner)
                model.fit(self.data_lin["X"], self.data_lin["a"], self.data_lin["y"])
                self.assertTrue(True)  # Fit did not crash 
開發者ID:IBM,項目名稱:causallib,代碼行數:22,代碼來源:test_standardization.py

示例2: test_ransac_custom_base_estimator

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RANSACRegressor [as 別名]
def test_ransac_custom_base_estimator():
    base_estimator = DecisionTreeRegressor()
    estimator = linear_model.RANSACRegressor(
        base_estimator=base_estimator,
        random_state=1)
    estimator.fit([[1], [2], [3]], [1, 2, 3])

    assembler = assemblers.RANSACModelAssembler(estimator)
    actual = assembler.assemble()

    expected = ast.IfExpr(
        ast.CompExpr(
            ast.FeatureRef(0),
            ast.NumVal(2.5),
            ast.CompOpType.LTE),
        ast.NumVal(2.0),
        ast.NumVal(3.0))

    assert utils.cmp_exprs(actual, expected) 
開發者ID:BayesWitnesses,項目名稱:m2cgen,代碼行數:21,代碼來源:test_meta.py

示例3: test_ransac_is_data_valid

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RANSACRegressor [as 別名]
def test_ransac_is_data_valid():
    def is_data_valid(X, y):
        assert_equal(X.shape[0], 2)
        assert_equal(y.shape[0], 2)
        return False

    rng = np.random.RandomState(0)
    X = rng.rand(10, 2)
    y = rng.rand(10, 1)

    base_estimator = LinearRegression()
    ransac_estimator = RANSACRegressor(base_estimator, min_samples=2,
                                       residual_threshold=5,
                                       is_data_valid=is_data_valid,
                                       random_state=0)

    assert_raises(ValueError, ransac_estimator.fit, X, y) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:19,代碼來源:test_ransac.py

示例4: test_ransac_max_trials

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RANSACRegressor [as 別名]
def test_ransac_max_trials():
    base_estimator = LinearRegression()

    ransac_estimator = RANSACRegressor(base_estimator, min_samples=2,
                                       residual_threshold=5, max_trials=0,
                                       random_state=0)
    assert_raises(ValueError, ransac_estimator.fit, X, y)

    # there is a 1e-9 chance it will take these many trials. No good reason
    # 1e-2 isn't enough, can still happen
    # 2 is the what ransac defines  as min_samples = X.shape[1] + 1
    max_trials = _dynamic_max_trials(
        len(X) - len(outliers), X.shape[0], 2, 1 - 1e-9)
    ransac_estimator = RANSACRegressor(base_estimator, min_samples=2)
    for i in range(50):
        ransac_estimator.set_params(min_samples=2, random_state=i)
        ransac_estimator.fit(X, y)
        assert_less(ransac_estimator.n_trials_, max_trials + 1) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:20,代碼來源:test_ransac.py

示例5: test_ransac_warn_exceed_max_skips

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RANSACRegressor [as 別名]
def test_ransac_warn_exceed_max_skips():
    global cause_skip
    cause_skip = False

    def is_data_valid(X, y):
        global cause_skip
        if not cause_skip:
            cause_skip = True
            return True
        else:
            return False

    base_estimator = LinearRegression()
    ransac_estimator = RANSACRegressor(base_estimator,
                                       is_data_valid=is_data_valid,
                                       max_skips=3,
                                       max_trials=5)

    assert_warns(ConvergenceWarning, ransac_estimator.fit, X, y)
    assert_equal(ransac_estimator.n_skips_no_inliers_, 0)
    assert_equal(ransac_estimator.n_skips_invalid_data_, 4)
    assert_equal(ransac_estimator.n_skips_invalid_model_, 0) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:24,代碼來源:test_ransac.py

示例6: test_ransac_multi_dimensional_targets

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RANSACRegressor [as 別名]
def test_ransac_multi_dimensional_targets():

    base_estimator = LinearRegression()
    ransac_estimator = RANSACRegressor(base_estimator, min_samples=2,
                                       residual_threshold=5, random_state=0)

    # 3-D target values
    yyy = np.column_stack([y, y, y])

    # Estimate parameters of corrupted data
    ransac_estimator.fit(X, yyy)

    # Ground truth / reference inlier mask
    ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_
                                   ).astype(np.bool_)
    ref_inlier_mask[outliers] = False

    assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:20,代碼來源:test_ransac.py

示例7: _vlines

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RANSACRegressor [as 別名]
def _vlines(lines, ctrs=None, lengths=None, vecs=None, angle_lo=20, angle_hi=160, ransac_options=RANSAC_OPTIONS):
    ctrs = ctrs if ctrs is not None else lines.mean(1)
    vecs = vecs if vecs is not None else lines[:, 1, :] - lines[:, 0, :]
    lengths = lengths if lengths is not None else np.hypot(vecs[:, 0], vecs[:, 1])

    angles = np.degrees(np.arccos(vecs[:, 0] / lengths))
    points = np.column_stack([ctrs[:, 0], angles])
    point_indices, = np.nonzero((angles > angle_lo) & (angles < angle_hi))
    points = points[point_indices]
    if len(points) > 2:
        model_ransac = linear_model.RANSACRegressor(**ransac_options)
        model_ransac.fit(points[:, 0].reshape(-1, 1), points[:, 1].reshape(-1, 1))
        inlier_mask = model_ransac.inlier_mask_
        valid_lines = lines[point_indices[inlier_mask], :, :]
    else:
        valid_lines = []
    return valid_lines 
開發者ID:jfemiani,項目名稱:facade-segmentation,代碼行數:19,代碼來源:rectify.py

示例8: _hlines

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RANSACRegressor [as 別名]
def _hlines(lines, ctrs=None, lengths=None, vecs=None, angle_lo=20, angle_hi=160, ransac_options=RANSAC_OPTIONS):
    ctrs = ctrs if ctrs is not None else lines.mean(1)
    vecs = vecs if vecs is not None else lines[:, 1, :] - lines[:, 0, :]
    lengths = lengths if lengths is not None else np.hypot(vecs[:, 0], vecs[:, 1])

    angles = np.degrees(np.arccos(vecs[:, 1] / lengths))
    points = np.column_stack([ctrs[:, 1], angles])
    point_indices, = np.nonzero((angles > angle_lo) & (angles < angle_hi))
    points = points[point_indices]
    if len(points) > 2:
        model_ransac = linear_model.RANSACRegressor(**ransac_options)
        model_ransac.fit(points[:, 0].reshape(-1, 1), points[:, 1].reshape(-1, 1))
        inlier_mask = model_ransac.inlier_mask_
        valid_lines = lines[point_indices[inlier_mask], :, :]
    else:
        valid_lines = []
    return valid_lines 
開發者ID:jfemiani,項目名稱:facade-segmentation,代碼行數:19,代碼來源:rectify.py

示例9: test_model_ransac_regressor_default

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RANSACRegressor [as 別名]
def test_model_ransac_regressor_default(self):
        model, X = fit_regression_model(
            linear_model.RANSACRegressor())
        model_onnx = convert_sklearn(
            model, "ransac regressor",
            [("input", FloatTensorType([None, X.shape[1]]))])
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X,
            model,
            model_onnx,
            verbose=False,
            basename="SklearnRANSACRegressor-Dec4",
            allow_failure="StrictVersion("
            "onnxruntime.__version__)"
            "<= StrictVersion('0.2.1')",
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:19,代碼來源:test_sklearn_glm_regressor_converter.py

示例10: test_model_ransac_regressor_mlp

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RANSACRegressor [as 別名]
def test_model_ransac_regressor_mlp(self):
        model, X = fit_regression_model(
            linear_model.RANSACRegressor(
                base_estimator=MLPRegressor(solver='lbfgs')))
        model_onnx = convert_sklearn(
            model, "ransac regressor",
            [("input", FloatTensorType([None, X.shape[1]]))])
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X,
            model,
            model_onnx,
            verbose=False,
            basename="SklearnRANSACRegressorMLP-Dec3",
            allow_failure="StrictVersion("
            "onnxruntime.__version__)"
            "<= StrictVersion('0.2.1')",
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:20,代碼來源:test_sklearn_glm_regressor_converter.py

示例11: test_model_ransac_regressor_tree

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RANSACRegressor [as 別名]
def test_model_ransac_regressor_tree(self):
        model, X = fit_regression_model(
            linear_model.RANSACRegressor(
                base_estimator=GradientBoostingRegressor()))
        model_onnx = convert_sklearn(
            model, "ransac regressor",
            [("input", FloatTensorType([None, X.shape[1]]))])
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X,
            model,
            model_onnx,
            verbose=False,
            basename="SklearnRANSACRegressorTree-Dec3",
            allow_failure="StrictVersion("
            "onnxruntime.__version__)"
            "<= StrictVersion('0.2.1')",
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:20,代碼來源:test_sklearn_glm_regressor_converter.py

示例12: RANSAC_m

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RANSACRegressor [as 別名]
def RANSAC_m(X_ransac,y_ransac,predFeat=False):
    ransac=RANSACRegressor(LinearRegression(),max_trials=100,min_samples=10,residual_metric=lambda x:np.sum(np.abs(x),axis=1),residual_threshold=1.0,random_state=0) #max_trials為最大迭代次數,min_samples隨機抽取作為內點的最小樣本數量,residual_metric傳遞了一個lambda函數,擬合曲線與樣本點間垂直距離的絕對值,residual_threshold殘差閾值,隻有小於該值的樣本點從加入內點inliers中,否則為外電outliers中,默認使用MAD(Median Absolute Deviation中位數決定偏差)估計內點閾值
    ransac.fit(X_ransac,y_ransac)
    print('Slope:%.3f;Intercept:%.3f'%(ransac.estimator_.coef_[0],ransac.estimator_.intercept_))  
    
    X=X_ransac
    y=y_ransac
    inlier_mask=ransac.inlier_mask_  #內點掩碼
#    print(inlier_mask)
    outlier_mask=np.logical_not(inlier_mask) #外點掩碼
    line_X=np.arange(0,5,0.5)
    line_y_ransac=ransac.predict(line_X[:,np.newaxis])
    plt.scatter(X[inlier_mask],y[inlier_mask],c='blue',marker='o',label='Inliers')
    plt.scatter(X[outlier_mask],y[outlier_mask],c='lightgreen',marker='s',label='OutLiers')
    plt.plot(line_X,line_y_ransac,color='red')
    plt.xlabel('hygiene_num')
    plt.ylabel('Price in $1000')
    plt.legend(loc='upper left')
    plt.show()
    
    if type(predFeat).__module__=='numpy': #判斷是否有空間幾何數據輸入
        return ransac.predict(predFeat) 
開發者ID:richieBao,項目名稱:python-urbanPlanning,代碼行數:24,代碼來源:poiRegression.py

示例13: test_ransac_warn_exceed_max_skips

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RANSACRegressor [as 別名]
def test_ransac_warn_exceed_max_skips():
    global cause_skip
    cause_skip = False

    def is_data_valid(X, y):
        global cause_skip
        if not cause_skip:
            cause_skip = True
            return True
        else:
            return False

    base_estimator = LinearRegression()
    ransac_estimator = RANSACRegressor(base_estimator,
                                       is_data_valid=is_data_valid,
                                       max_skips=3,
                                       max_trials=5)

    assert_warns(UserWarning, ransac_estimator.fit, X, y)
    assert_equal(ransac_estimator.n_skips_no_inliers_, 0)
    assert_equal(ransac_estimator.n_skips_invalid_data_, 4)
    assert_equal(ransac_estimator.n_skips_invalid_model_, 0) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:24,代碼來源:test_ransac.py

示例14: test_ransac_multi_dimensional_targets

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RANSACRegressor [as 別名]
def test_ransac_multi_dimensional_targets():

    base_estimator = LinearRegression()
    ransac_estimator = RANSACRegressor(base_estimator, min_samples=2,
                                       residual_threshold=5, random_state=0)

    # 3-D target values
    yyy = np.column_stack([y, y, y])

    # Estimate parameters of corrupted data
    ransac_estimator.fit(X, yyy)

    # Ground truth / reference inlier mask
    ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_
                                   ).astype(np.bool_)
    ref_inlier_mask[outliers] = False

    assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask)


# XXX: Remove in 0.20 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:23,代碼來源:test_ransac.py

示例15: _ransac_regressor

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RANSACRegressor [as 別名]
def _ransac_regressor(candidate_data, reference_data, max_trials=10000):
    model = linear_model.RANSACRegressor(linear_model.LinearRegression(),
                                         max_trials=max_trials)
    model.fit(numpy.array([[c] for c in candidate_data]),
              numpy.array(reference_data))
    gain = model.estimator_.coef_
    offset = model.estimator_.intercept_

    return gain, offset 
開發者ID:planetlabs,項目名稱:radiometric_normalization,代碼行數:11,代碼來源:robust.py


注:本文中的sklearn.linear_model.RANSACRegressor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。