當前位置: 首頁>>代碼示例>>Python>>正文


Python linear_model.Perceptron方法代碼示例

本文整理匯總了Python中sklearn.linear_model.Perceptron方法的典型用法代碼示例。如果您正苦於以下問題:Python linear_model.Perceptron方法的具體用法?Python linear_model.Perceptron怎麽用?Python linear_model.Perceptron使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.linear_model的用法示例。


在下文中一共展示了linear_model.Perceptron方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: fit

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Perceptron [as 別名]
def fit(self, X, y, classes=None, sample_weight=None):
        """ Calls the Perceptron fit function from sklearn.

        Parameters
        ----------
        X: numpy.ndarray of shape (n_samples, n_features)
            The feature's matrix.

        y: Array-like
            The class labels for all samples in X.

        classes: Not used.

        sample_weight:
            Samples weight. If not provided, uniform weights are assumed.

        Returns
        -------
        PerceptronMask
            self

        """
        self.classifier.fit(X=X, y=y, sample_weight=sample_weight)
        return self 
開發者ID:scikit-multiflow,項目名稱:scikit-multiflow,代碼行數:26,代碼來源:perceptron.py

示例2: test_classification

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Perceptron [as 別名]
def test_classification():
    # Check classification for various parameter settings.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(iris.data,
                                                        iris.target,
                                                        random_state=rng)
    grid = ParameterGrid({"max_samples": [0.5, 1.0],
                          "max_features": [1, 2, 4],
                          "bootstrap": [True, False],
                          "bootstrap_features": [True, False]})

    for base_estimator in [None,
                           DummyClassifier(),
                           Perceptron(tol=1e-3),
                           DecisionTreeClassifier(),
                           KNeighborsClassifier(),
                           SVC(gamma="scale")]:
        for params in grid:
            BaggingClassifier(base_estimator=base_estimator,
                              random_state=rng,
                              **params).fit(X_train, y_train).predict(X_test) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:23,代碼來源:test_bagging.py

示例3: test_gridsearch_pipeline_precomputed

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Perceptron [as 別名]
def test_gridsearch_pipeline_precomputed():
    # Test if we can do a grid-search to find parameters to separate
    # circles with a perceptron model using a precomputed kernel.
    X, y = make_circles(n_samples=400, factor=.3, noise=.05,
                        random_state=0)
    kpca = KernelPCA(kernel="precomputed", n_components=2)
    pipeline = Pipeline([("kernel_pca", kpca),
                         ("Perceptron", Perceptron(max_iter=5))])
    param_grid = dict(Perceptron__max_iter=np.arange(1, 5))
    grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid)
    X_kernel = rbf_kernel(X, gamma=2.)
    grid_search.fit(X_kernel, y)
    assert_equal(grid_search.best_score_, 1)


# 0.23. warning about tol not having its correct default value. 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:18,代碼來源:test_kernel_pca.py

示例4: test_model_perceptron_binary_class

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Perceptron [as 別名]
def test_model_perceptron_binary_class(self):
        model, X = fit_classification_model(
            Perceptron(random_state=42), 2)
        model_onnx = convert_sklearn(
            model,
            "scikit-learn Perceptron binary classifier",
            [("input", FloatTensorType([None, X.shape[1]]))],
            target_opset=TARGET_OPSET
        )
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X.astype(np.float32),
            model,
            model_onnx,
            basename="SklearnPerceptronClassifierBinary-Out0",
            allow_failure="StrictVersion(onnx.__version__)"
                          " < StrictVersion('1.2') or "
                          "StrictVersion(onnxruntime.__version__)"
                          " <= StrictVersion('0.2.1')",
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:22,代碼來源:test_sklearn_perceptron_converter.py

示例5: test_model_perceptron_multi_class

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Perceptron [as 別名]
def test_model_perceptron_multi_class(self):
        model, X = fit_classification_model(
            Perceptron(random_state=42), 5)
        model_onnx = convert_sklearn(
            model,
            "scikit-learn Perceptron multi-class classifier",
            [("input", FloatTensorType([None, X.shape[1]]))],
            target_opset=TARGET_OPSET
        )
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X.astype(np.float32),
            model,
            model_onnx,
            basename="SklearnPerceptronClassifierMulti-Out0",
            allow_failure="StrictVersion(onnx.__version__)"
                          " < StrictVersion('1.2') or "
                          "StrictVersion(onnxruntime.__version__)"
                          " <= StrictVersion('0.2.1')",
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:22,代碼來源:test_sklearn_perceptron_converter.py

示例6: test_model_perceptron_binary_class_int

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Perceptron [as 別名]
def test_model_perceptron_binary_class_int(self):
        model, X = fit_classification_model(
            Perceptron(random_state=42), 2, is_int=True)
        model_onnx = convert_sklearn(
            model,
            "scikit-learn Perceptron binary classifier",
            [("input", Int64TensorType([None, X.shape[1]]))],
            target_opset=TARGET_OPSET
        )
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X.astype(np.int64),
            model,
            model_onnx,
            basename="SklearnPerceptronClassifierBinaryInt-Out0",
            allow_failure="StrictVersion(onnx.__version__)"
                          " < StrictVersion('1.2') or "
                          "StrictVersion(onnxruntime.__version__)"
                          " <= StrictVersion('0.2.1')",
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:22,代碼來源:test_sklearn_perceptron_converter.py

示例7: test_model_perceptron_multi_class_int

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Perceptron [as 別名]
def test_model_perceptron_multi_class_int(self):
        model, X = fit_classification_model(
            Perceptron(random_state=42), 5, is_int=True)
        model_onnx = convert_sklearn(
            model,
            "scikit-learn Perceptron multi-class classifier",
            [("input", Int64TensorType([None, X.shape[1]]))],
            target_opset=TARGET_OPSET
        )
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X.astype(np.int64),
            model,
            model_onnx,
            basename="SklearnPerceptronClassifierMultiInt-Out0",
            allow_failure="StrictVersion(onnx.__version__)"
                          " < StrictVersion('1.2') or "
                          "StrictVersion(onnxruntime.__version__)"
                          " <= StrictVersion('0.2.1')",
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:22,代碼來源:test_sklearn_perceptron_converter.py

示例8: test_fit

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Perceptron [as 別名]
def test_fit(example_estimate_competence, create_pool_classifiers):
    X, y = example_estimate_competence[0:2]

    knop_test = KNOP(create_pool_classifiers)
    knop_test.fit(X, y)
    expected_scores = np.array([[0.5, 0.5], [1.0, 0.0], [0.33, 0.67]])
    expected_scores = np.tile(expected_scores, (15, 1, 1))

    assert np.array_equal(expected_scores, knop_test.dsel_scores_)

    # Assert the roc_algorithm_ is fitted to the scores (decision space)
    # rather than the features (feature space)
    expected_roc_data = knop_test.dsel_scores_[:, :, 0]
    assert np.array_equal(knop_test.op_knn_._fit_X, expected_roc_data)


# Test if the class is raising an error when the base classifiers do not
# implements the predict_proba method. Should raise an exception when the
# base classifier cannot estimate posterior probabilities (predict_proba)
# Using Perceptron classifier as it does not implements predict_proba. 
開發者ID:scikit-learn-contrib,項目名稱:DESlib,代碼行數:22,代碼來源:test_knop.py

示例9: test_classification

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Perceptron [as 別名]
def test_classification():
    # Check classification for various parameter settings.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(iris.data,
                                                        iris.target,
                                                        random_state=rng)
    grid = ParameterGrid({"max_samples": [0.5, 1.0],
                          "max_features": [1, 2, 4],
                          "bootstrap": [True, False],
                          "bootstrap_features": [True, False]})

    for base_estimator in [None,
                           DummyClassifier(),
                           Perceptron(tol=1e-3),
                           DecisionTreeClassifier(),
                           KNeighborsClassifier(),
                           SVC()]:
        for params in grid:
            BaggingClassifier(base_estimator=base_estimator,
                              random_state=rng,
                              **params).fit(X_train, y_train).predict(X_test) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:23,代碼來源:test_bagging.py

示例10: set_params

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Perceptron [as 別名]
def set_params(self, r=3, d=8, nbits=16, discrete=True,
                   balance=False, subsample_size=200, ratio=2,
                   normalization=False, inner_normalization=False,
                   penalty='elasticnet'):
        """setter."""
        self.r = r
        self.d = d
        self.nbits = nbits
        self.normalization = normalization
        self.inner_normalization = inner_normalization
        self.discrete = discrete
        self.balance = balance
        self.subsample_size = subsample_size
        self.ratio = ratio
        if penalty == 'perceptron':
            self.model = Perceptron(max_iter=5, tol=None)
        else:
            self.model = SGDClassifier(
                average=True, class_weight='balanced', shuffle=True,
                penalty=penalty, max_iter=5, tol=None)
        self.vectorizer = Vectorizer(
            r=self.r, d=self.d,
            normalization=self.normalization,
            inner_normalization=self.inner_normalization,
            discrete=self.discrete,
            nbits=self.nbits)
        return self 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:29,代碼來源:estimator.py

示例11: partial_fit

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Perceptron [as 別名]
def partial_fit(self, X, y, classes=None, sample_weight=None):
        """ partial_fit

        Calls the Perceptron partial_fit from sklearn.

        Parameters
        ----------
        X: numpy.ndarray of shape (n_samples, n_features)
            The feature's matrix.

        y: Array-like
            The class labels for all samples in X.

        classes: Not used.

        sample_weight:
            Samples weight. If not provided, uniform weights are assumed.

        Returns
        -------
        PerceptronMask
            self

        """
        self.classifier.partial_fit(X=X, y=y, classes=classes, sample_weight=sample_weight)
        return self 
開發者ID:scikit-multiflow,項目名稱:scikit-multiflow,代碼行數:28,代碼來源:perceptron.py

示例12: test_base

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Perceptron [as 別名]
def test_base():
    # Check BaseEnsemble methods.
    ensemble = BaggingClassifier(
        base_estimator=Perceptron(tol=1e-3, random_state=None), n_estimators=3)

    iris = load_iris()
    ensemble.fit(iris.data, iris.target)
    ensemble.estimators_ = []  # empty the list and create estimators manually

    ensemble._make_estimator()
    random_state = np.random.RandomState(3)
    ensemble._make_estimator(random_state=random_state)
    ensemble._make_estimator(random_state=random_state)
    ensemble._make_estimator(append=False)

    assert_equal(3, len(ensemble))
    assert_equal(3, len(ensemble.estimators_))

    assert isinstance(ensemble[0], Perceptron)
    assert_equal(ensemble[0].random_state, None)
    assert isinstance(ensemble[1].random_state, int)
    assert isinstance(ensemble[2].random_state, int)
    assert_not_equal(ensemble[1].random_state, ensemble[2].random_state)

    np_int_ensemble = BaggingClassifier(base_estimator=Perceptron(tol=1e-3),
                                        n_estimators=np.int32(3))
    np_int_ensemble.fit(iris.data, iris.target) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:29,代碼來源:test_base.py

示例13: test_base_zero_n_estimators

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Perceptron [as 別名]
def test_base_zero_n_estimators():
    # Check that instantiating a BaseEnsemble with n_estimators<=0 raises
    # a ValueError.
    ensemble = BaggingClassifier(base_estimator=Perceptron(tol=1e-3),
                                 n_estimators=0)
    iris = load_iris()
    assert_raise_message(ValueError,
                         "n_estimators must be greater than zero, got 0.",
                         ensemble.fit, iris.data, iris.target) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:11,代碼來源:test_base.py

示例14: test_base_not_int_n_estimators

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Perceptron [as 別名]
def test_base_not_int_n_estimators():
    # Check that instantiating a BaseEnsemble with a string as n_estimators
    # raises a ValueError demanding n_estimators to be supplied as an integer.
    string_ensemble = BaggingClassifier(base_estimator=Perceptron(tol=1e-3),
                                        n_estimators='3')
    iris = load_iris()
    assert_raise_message(ValueError,
                         "n_estimators must be an integer",
                         string_ensemble.fit, iris.data, iris.target)
    float_ensemble = BaggingClassifier(base_estimator=Perceptron(tol=1e-3),
                                       n_estimators=3.0)
    assert_raise_message(ValueError,
                         "n_estimators must be an integer",
                         float_ensemble.fit, iris.data, iris.target) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:16,代碼來源:test_base.py

示例15: test_perceptron_accuracy

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Perceptron [as 別名]
def test_perceptron_accuracy():
    for data in (X, X_csr):
        clf = Perceptron(max_iter=100, tol=None, shuffle=False)
        clf.fit(data, y)
        score = clf.score(data, y)
        assert_greater(score, 0.7)


# 0.23. warning about tol not having its correct default value. 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:11,代碼來源:test_perceptron.py


注:本文中的sklearn.linear_model.Perceptron方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。