本文整理匯總了Python中sklearn.linear_model.LassoLars方法的典型用法代碼示例。如果您正苦於以下問題:Python linear_model.LassoLars方法的具體用法?Python linear_model.LassoLars怎麽用?Python linear_model.LassoLars使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.linear_model
的用法示例。
在下文中一共展示了linear_model.LassoLars方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_rank_deficient_design
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_rank_deficient_design():
# consistency test that checks that LARS Lasso is handling rank
# deficient input data (with n_features < rank) in the same way
# as coordinate descent Lasso
y = [5, 0, 5]
for X in (
[[5, 0],
[0, 5],
[10, 10]],
[[10, 10, 0],
[1e-32, 0, 0],
[0, 0, 1]]
):
# To be able to use the coefs to compute the objective function,
# we need to turn off normalization
lars = linear_model.LassoLars(.1, normalize=False)
coef_lars_ = lars.fit(X, y).coef_
obj_lars = (1. / (2. * 3.)
* linalg.norm(y - np.dot(X, coef_lars_)) ** 2
+ .1 * linalg.norm(coef_lars_, 1))
coord_descent = linear_model.Lasso(.1, tol=1e-6, normalize=False)
coef_cd_ = coord_descent.fit(X, y).coef_
obj_cd = ((1. / (2. * 3.)) * linalg.norm(y - np.dot(X, coef_cd_)) ** 2
+ .1 * linalg.norm(coef_cd_, 1))
assert_less(obj_lars, obj_cd * (1. + 1e-8))
示例2: test_lasso_lars_vs_lasso_cd_early_stopping
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_lasso_lars_vs_lasso_cd_early_stopping():
# Test that LassoLars and Lasso using coordinate descent give the
# same results when early stopping is used.
# (test : before, in the middle, and in the last part of the path)
alphas_min = [10, 0.9, 1e-4]
for alpha_min in alphas_min:
alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso',
alpha_min=alpha_min)
lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8)
lasso_cd.alpha = alphas[-1]
lasso_cd.fit(X, y)
error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_)
assert_less(error, 0.01)
# same test, with normalization
for alpha_min in alphas_min:
alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso',
alpha_min=alpha_min)
lasso_cd = linear_model.Lasso(fit_intercept=True, normalize=True,
tol=1e-8)
lasso_cd.alpha = alphas[-1]
lasso_cd.fit(X, y)
error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_)
assert_less(error, 0.01)
示例3: test_multitarget
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_multitarget():
# Assure that estimators receiving multidimensional y do the right thing
Y = np.vstack([y, y ** 2]).T
n_targets = Y.shape[1]
estimators = [
linear_model.LassoLars(),
linear_model.Lars(),
# regression test for gh-1615
linear_model.LassoLars(fit_intercept=False),
linear_model.Lars(fit_intercept=False),
]
for estimator in estimators:
estimator.fit(X, Y)
Y_pred = estimator.predict(X)
alphas, active, coef, path = (estimator.alphas_, estimator.active_,
estimator.coef_, estimator.coef_path_)
for k in range(n_targets):
estimator.fit(X, Y[:, k])
y_pred = estimator.predict(X)
assert_array_almost_equal(alphas[k], estimator.alphas_)
assert_array_almost_equal(active[k], estimator.active_)
assert_array_almost_equal(coef[k], estimator.coef_)
assert_array_almost_equal(path[k], estimator.coef_path_)
assert_array_almost_equal(Y_pred[:, k], y_pred)
示例4: test_estimatorclasses_positive_constraint
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_estimatorclasses_positive_constraint():
# testing the transmissibility for the positive option of all estimator
# classes in this same function here
default_parameter = {'fit_intercept': False}
estimator_parameter_map = {'LassoLars': {'alpha': 0.1},
'LassoLarsCV': {},
'LassoLarsIC': {}}
for estname in estimator_parameter_map:
params = default_parameter.copy()
params.update(estimator_parameter_map[estname])
estimator = getattr(linear_model, estname)(positive=False, **params)
estimator.fit(X, y)
assert estimator.coef_.min() < 0
estimator = getattr(linear_model, estname)(positive=True, **params)
estimator.fit(X, y)
assert min(estimator.coef_) >= 0
示例5: getModels
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def getModels():
result = []
result.append("LinearRegression")
result.append("BayesianRidge")
result.append("ARDRegression")
result.append("ElasticNet")
result.append("HuberRegressor")
result.append("Lasso")
result.append("LassoLars")
result.append("Rigid")
result.append("SGDRegressor")
result.append("SVR")
result.append("MLPClassifier")
result.append("KNeighborsClassifier")
result.append("SVC")
result.append("GaussianProcessClassifier")
result.append("DecisionTreeClassifier")
result.append("RandomForestClassifier")
result.append("AdaBoostClassifier")
result.append("GaussianNB")
result.append("LogisticRegression")
result.append("QuadraticDiscriminantAnalysis")
return result
示例6: test_model_lasso_lars_bool
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_model_lasso_lars_bool(self):
model, X = fit_regression_model(
linear_model.LassoLars(), is_bool=True)
model_onnx = convert_sklearn(
model, "lasso lars",
[("input", BooleanTensorType([None, X.shape[1]]))])
self.assertIsNotNone(model_onnx)
dump_data_and_model(
X,
model,
model_onnx,
basename="SklearnLassoLarsBool",
allow_failure="StrictVersion("
"onnxruntime.__version__)"
"<= StrictVersion('0.2.1')",
)
示例7: test_grid_search_regressor_float
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_grid_search_regressor_float(self):
tuned_parameters = [{'alpha': np.logspace(-4, -0.5, 4)}]
clf = GridSearchCV(LassoLars(max_iter=100),
tuned_parameters, cv=5)
model, X = fit_regression_model(clf)
model_onnx = convert_sklearn(
model, "GridSearchCV",
[("input", FloatTensorType([None, X.shape[1]]))])
self.assertIsNotNone(model_onnx)
dump_data_and_model(
X,
model,
model_onnx,
basename="SklearnGridSearchRegressionFloat-OneOffArray-Dec4",
allow_failure="StrictVersion("
"onnxruntime.__version__) "
"<= StrictVersion('0.2.1') or "
"StrictVersion(onnx.__version__) "
"== StrictVersion('1.4.1')",
)
示例8: test_rank_deficient_design
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_rank_deficient_design():
# consistency test that checks that LARS Lasso is handling rank
# deficient input data (with n_features < rank) in the same way
# as coordinate descent Lasso
y = [5, 0, 5]
for X in ([[5, 0],
[0, 5],
[10, 10]],
[[10, 10, 0],
[1e-32, 0, 0],
[0, 0, 1]],
):
# To be able to use the coefs to compute the objective function,
# we need to turn off normalization
lars = linear_model.LassoLars(.1, normalize=False)
coef_lars_ = lars.fit(X, y).coef_
obj_lars = (1. / (2. * 3.)
* linalg.norm(y - np.dot(X, coef_lars_)) ** 2
+ .1 * linalg.norm(coef_lars_, 1))
coord_descent = linear_model.Lasso(.1, tol=1e-6, normalize=False)
coef_cd_ = coord_descent.fit(X, y).coef_
obj_cd = ((1. / (2. * 3.)) * linalg.norm(y - np.dot(X, coef_cd_)) ** 2
+ .1 * linalg.norm(coef_cd_, 1))
assert_less(obj_lars, obj_cd * (1. + 1e-8))
示例9: test_lasso_lars_vs_lasso_cd_early_stopping
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_lasso_lars_vs_lasso_cd_early_stopping(verbose=False):
# Test that LassoLars and Lasso using coordinate descent give the
# same results when early stopping is used.
# (test : before, in the middle, and in the last part of the path)
alphas_min = [10, 0.9, 1e-4]
for alpha_min in alphas_min:
alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso',
alpha_min=alpha_min)
lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8)
lasso_cd.alpha = alphas[-1]
lasso_cd.fit(X, y)
error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_)
assert_less(error, 0.01)
# same test, with normalization
for alpha_min in alphas_min:
alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso',
alpha_min=alpha_min)
lasso_cd = linear_model.Lasso(fit_intercept=True, normalize=True,
tol=1e-8)
lasso_cd.alpha = alphas[-1]
lasso_cd.fit(X, y)
error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_)
assert_less(error, 0.01)
示例10: test_lars_lstsq
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_lars_lstsq():
# Test that Lars gives least square solution at the end
# of the path
X1 = 3 * X # use un-normalized dataset
clf = linear_model.LassoLars(alpha=0.)
clf.fit(X1, y)
# Avoid FutureWarning about default value change when numpy >= 1.14
rcond = None if LooseVersion(np.__version__) >= '1.14' else -1
coef_lstsq = np.linalg.lstsq(X1, y, rcond=rcond)[0]
assert_array_almost_equal(clf.coef_, coef_lstsq)
示例11: test_lasso_lars_vs_lasso_cd
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_lasso_lars_vs_lasso_cd():
# Test that LassoLars and Lasso using coordinate descent give the
# same results.
X = 3 * diabetes.data
alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso')
lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8)
for c, a in zip(lasso_path.T, alphas):
if a == 0:
continue
lasso_cd.alpha = a
lasso_cd.fit(X, y)
error = linalg.norm(c - lasso_cd.coef_)
assert_less(error, 0.01)
# similar test, with the classifiers
for alpha in np.linspace(1e-2, 1 - 1e-2, 20):
clf1 = linear_model.LassoLars(alpha=alpha, normalize=False).fit(X, y)
clf2 = linear_model.Lasso(alpha=alpha, tol=1e-8,
normalize=False).fit(X, y)
err = linalg.norm(clf1.coef_ - clf2.coef_)
assert_less(err, 1e-3)
# same test, with normalized data
X = diabetes.data
alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso')
lasso_cd = linear_model.Lasso(fit_intercept=False, normalize=True,
tol=1e-8)
for c, a in zip(lasso_path.T, alphas):
if a == 0:
continue
lasso_cd.alpha = a
lasso_cd.fit(X, y)
error = linalg.norm(c - lasso_cd.coef_)
assert_less(error, 0.01)
示例12: test_lasso_lars_path_length
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_lasso_lars_path_length():
# Test that the path length of the LassoLars is right
lasso = linear_model.LassoLars()
lasso.fit(X, y)
lasso2 = linear_model.LassoLars(alpha=lasso.alphas_[2])
lasso2.fit(X, y)
assert_array_almost_equal(lasso.alphas_[:3], lasso2.alphas_)
# Also check that the sequence of alphas is always decreasing
assert np.all(np.diff(lasso.alphas_) < 0)
示例13: _create_regressor
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def _create_regressor(self):
if self.mode == 'default':
return Lars()
if self.mode == 'lasso':
return LassoLars(alpha=self.alpha)
raise ValueError('Unexpected mode ' + self.mode + '. Expected "default" or "lasso"')
示例14: update_spatial_perpx
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def update_spatial_perpx(y, alpha, sub, C):
res = np.zeros_like(sub, dtype=y.dtype)
if np.sum(sub) > 0:
C = C[:, sub]
clf = LassoLars(alpha=alpha, positive=True)
coef = clf.fit(C, y).coef_
res[np.where(sub)[0]] = coef
return res
示例15: test_model_lasso_lars
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_model_lasso_lars(self):
model, X = fit_regression_model(linear_model.LassoLars(alpha=0.01))
model_onnx = convert_sklearn(
model, "lasso lars",
[("input", FloatTensorType([None, X.shape[1]]))])
self.assertIsNotNone(model_onnx)
dump_data_and_model(
X,
model,
model_onnx,
basename="SklearnLassoLars-Dec4",
allow_failure="StrictVersion("
"onnxruntime.__version__)"
"<= StrictVersion('0.2.1')",
)