當前位置: 首頁>>代碼示例>>Python>>正文


Python linear_model.LassoLars方法代碼示例

本文整理匯總了Python中sklearn.linear_model.LassoLars方法的典型用法代碼示例。如果您正苦於以下問題:Python linear_model.LassoLars方法的具體用法?Python linear_model.LassoLars怎麽用?Python linear_model.LassoLars使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.linear_model的用法示例。


在下文中一共展示了linear_model.LassoLars方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_rank_deficient_design

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_rank_deficient_design():
    # consistency test that checks that LARS Lasso is handling rank
    # deficient input data (with n_features < rank) in the same way
    # as coordinate descent Lasso
    y = [5, 0, 5]
    for X in (
              [[5, 0],
               [0, 5],
               [10, 10]],
              [[10, 10, 0],
               [1e-32, 0, 0],
               [0, 0, 1]]
             ):
        # To be able to use the coefs to compute the objective function,
        # we need to turn off normalization
        lars = linear_model.LassoLars(.1, normalize=False)
        coef_lars_ = lars.fit(X, y).coef_
        obj_lars = (1. / (2. * 3.)
                    * linalg.norm(y - np.dot(X, coef_lars_)) ** 2
                    + .1 * linalg.norm(coef_lars_, 1))
        coord_descent = linear_model.Lasso(.1, tol=1e-6, normalize=False)
        coef_cd_ = coord_descent.fit(X, y).coef_
        obj_cd = ((1. / (2. * 3.)) * linalg.norm(y - np.dot(X, coef_cd_)) ** 2
                  + .1 * linalg.norm(coef_cd_, 1))
        assert_less(obj_lars, obj_cd * (1. + 1e-8)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:27,代碼來源:test_least_angle.py

示例2: test_lasso_lars_vs_lasso_cd_early_stopping

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_lasso_lars_vs_lasso_cd_early_stopping():
    # Test that LassoLars and Lasso using coordinate descent give the
    # same results when early stopping is used.
    # (test : before, in the middle, and in the last part of the path)
    alphas_min = [10, 0.9, 1e-4]

    for alpha_min in alphas_min:
        alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso',
                                                       alpha_min=alpha_min)
        lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8)
        lasso_cd.alpha = alphas[-1]
        lasso_cd.fit(X, y)
        error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_)
        assert_less(error, 0.01)

    # same test, with normalization
    for alpha_min in alphas_min:
        alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso',
                                                       alpha_min=alpha_min)
        lasso_cd = linear_model.Lasso(fit_intercept=True, normalize=True,
                                      tol=1e-8)
        lasso_cd.alpha = alphas[-1]
        lasso_cd.fit(X, y)
        error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_)
        assert_less(error, 0.01) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:27,代碼來源:test_least_angle.py

示例3: test_multitarget

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_multitarget():
    # Assure that estimators receiving multidimensional y do the right thing
    Y = np.vstack([y, y ** 2]).T
    n_targets = Y.shape[1]
    estimators = [
        linear_model.LassoLars(),
        linear_model.Lars(),
        # regression test for gh-1615
        linear_model.LassoLars(fit_intercept=False),
        linear_model.Lars(fit_intercept=False),
    ]

    for estimator in estimators:
        estimator.fit(X, Y)
        Y_pred = estimator.predict(X)
        alphas, active, coef, path = (estimator.alphas_, estimator.active_,
                                      estimator.coef_, estimator.coef_path_)
        for k in range(n_targets):
            estimator.fit(X, Y[:, k])
            y_pred = estimator.predict(X)
            assert_array_almost_equal(alphas[k], estimator.alphas_)
            assert_array_almost_equal(active[k], estimator.active_)
            assert_array_almost_equal(coef[k], estimator.coef_)
            assert_array_almost_equal(path[k], estimator.coef_path_)
            assert_array_almost_equal(Y_pred[:, k], y_pred) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:27,代碼來源:test_least_angle.py

示例4: test_estimatorclasses_positive_constraint

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_estimatorclasses_positive_constraint():
    # testing the transmissibility for the positive option of all estimator
    # classes in this same function here
    default_parameter = {'fit_intercept': False}

    estimator_parameter_map = {'LassoLars': {'alpha': 0.1},
                               'LassoLarsCV': {},
                               'LassoLarsIC': {}}
    for estname in estimator_parameter_map:
        params = default_parameter.copy()
        params.update(estimator_parameter_map[estname])
        estimator = getattr(linear_model, estname)(positive=False, **params)
        estimator.fit(X, y)
        assert estimator.coef_.min() < 0
        estimator = getattr(linear_model, estname)(positive=True, **params)
        estimator.fit(X, y)
        assert min(estimator.coef_) >= 0 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:19,代碼來源:test_least_angle.py

示例5: getModels

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def getModels():
    result = []
    result.append("LinearRegression")
    result.append("BayesianRidge")
    result.append("ARDRegression")
    result.append("ElasticNet")
    result.append("HuberRegressor")
    result.append("Lasso")
    result.append("LassoLars")
    result.append("Rigid")
    result.append("SGDRegressor")
    result.append("SVR")
    result.append("MLPClassifier")
    result.append("KNeighborsClassifier")
    result.append("SVC")
    result.append("GaussianProcessClassifier")
    result.append("DecisionTreeClassifier")
    result.append("RandomForestClassifier")
    result.append("AdaBoostClassifier")
    result.append("GaussianNB")
    result.append("LogisticRegression")
    result.append("QuadraticDiscriminantAnalysis")
    return result 
開發者ID:tech-quantum,項目名稱:sia-cog,代碼行數:25,代碼來源:scikitlearn.py

示例6: test_model_lasso_lars_bool

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_model_lasso_lars_bool(self):
        model, X = fit_regression_model(
            linear_model.LassoLars(), is_bool=True)
        model_onnx = convert_sklearn(
            model, "lasso lars",
            [("input", BooleanTensorType([None, X.shape[1]]))])
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X,
            model,
            model_onnx,
            basename="SklearnLassoLarsBool",
            allow_failure="StrictVersion("
            "onnxruntime.__version__)"
            "<= StrictVersion('0.2.1')",
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:18,代碼來源:test_sklearn_glm_regressor_converter.py

示例7: test_grid_search_regressor_float

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_grid_search_regressor_float(self):
        tuned_parameters = [{'alpha': np.logspace(-4, -0.5, 4)}]
        clf = GridSearchCV(LassoLars(max_iter=100),
                           tuned_parameters, cv=5)
        model, X = fit_regression_model(clf)
        model_onnx = convert_sklearn(
            model, "GridSearchCV",
            [("input", FloatTensorType([None, X.shape[1]]))])
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X,
            model,
            model_onnx,
            basename="SklearnGridSearchRegressionFloat-OneOffArray-Dec4",
            allow_failure="StrictVersion("
            "onnxruntime.__version__) "
            "<= StrictVersion('0.2.1') or "
            "StrictVersion(onnx.__version__) "
            "== StrictVersion('1.4.1')",
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:22,代碼來源:test_sklearn_grid_search_cv_converter.py

示例8: test_rank_deficient_design

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_rank_deficient_design():
    # consistency test that checks that LARS Lasso is handling rank
    # deficient input data (with n_features < rank) in the same way
    # as coordinate descent Lasso
    y = [5, 0, 5]
    for X in ([[5, 0],
               [0, 5],
               [10, 10]],

              [[10, 10, 0],
               [1e-32, 0, 0],
               [0, 0, 1]],
              ):
        # To be able to use the coefs to compute the objective function,
        # we need to turn off normalization
        lars = linear_model.LassoLars(.1, normalize=False)
        coef_lars_ = lars.fit(X, y).coef_
        obj_lars = (1. / (2. * 3.)
                    * linalg.norm(y - np.dot(X, coef_lars_)) ** 2
                    + .1 * linalg.norm(coef_lars_, 1))
        coord_descent = linear_model.Lasso(.1, tol=1e-6, normalize=False)
        coef_cd_ = coord_descent.fit(X, y).coef_
        obj_cd = ((1. / (2. * 3.)) * linalg.norm(y - np.dot(X, coef_cd_)) ** 2
                  + .1 * linalg.norm(coef_cd_, 1))
        assert_less(obj_lars, obj_cd * (1. + 1e-8)) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:27,代碼來源:test_least_angle.py

示例9: test_lasso_lars_vs_lasso_cd_early_stopping

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_lasso_lars_vs_lasso_cd_early_stopping(verbose=False):
    # Test that LassoLars and Lasso using coordinate descent give the
    # same results when early stopping is used.
    # (test : before, in the middle, and in the last part of the path)
    alphas_min = [10, 0.9, 1e-4]

    for alpha_min in alphas_min:
        alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso',
                                                       alpha_min=alpha_min)
        lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8)
        lasso_cd.alpha = alphas[-1]
        lasso_cd.fit(X, y)
        error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_)
        assert_less(error, 0.01)

    # same test, with normalization
    for alpha_min in alphas_min:
        alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso',
                                                       alpha_min=alpha_min)
        lasso_cd = linear_model.Lasso(fit_intercept=True, normalize=True,
                                      tol=1e-8)
        lasso_cd.alpha = alphas[-1]
        lasso_cd.fit(X, y)
        error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_)
        assert_less(error, 0.01) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:27,代碼來源:test_least_angle.py

示例10: test_lars_lstsq

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_lars_lstsq():
    # Test that Lars gives least square solution at the end
    # of the path
    X1 = 3 * X  # use un-normalized dataset
    clf = linear_model.LassoLars(alpha=0.)
    clf.fit(X1, y)
    # Avoid FutureWarning about default value change when numpy >= 1.14
    rcond = None if LooseVersion(np.__version__) >= '1.14' else -1
    coef_lstsq = np.linalg.lstsq(X1, y, rcond=rcond)[0]
    assert_array_almost_equal(clf.coef_, coef_lstsq) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:12,代碼來源:test_least_angle.py

示例11: test_lasso_lars_vs_lasso_cd

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_lasso_lars_vs_lasso_cd():
    # Test that LassoLars and Lasso using coordinate descent give the
    # same results.
    X = 3 * diabetes.data

    alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso')
    lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8)
    for c, a in zip(lasso_path.T, alphas):
        if a == 0:
            continue
        lasso_cd.alpha = a
        lasso_cd.fit(X, y)
        error = linalg.norm(c - lasso_cd.coef_)
        assert_less(error, 0.01)

    # similar test, with the classifiers
    for alpha in np.linspace(1e-2, 1 - 1e-2, 20):
        clf1 = linear_model.LassoLars(alpha=alpha, normalize=False).fit(X, y)
        clf2 = linear_model.Lasso(alpha=alpha, tol=1e-8,
                                  normalize=False).fit(X, y)
        err = linalg.norm(clf1.coef_ - clf2.coef_)
        assert_less(err, 1e-3)

    # same test, with normalized data
    X = diabetes.data
    alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso')
    lasso_cd = linear_model.Lasso(fit_intercept=False, normalize=True,
                                  tol=1e-8)
    for c, a in zip(lasso_path.T, alphas):
        if a == 0:
            continue
        lasso_cd.alpha = a
        lasso_cd.fit(X, y)
        error = linalg.norm(c - lasso_cd.coef_)
        assert_less(error, 0.01) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:37,代碼來源:test_least_angle.py

示例12: test_lasso_lars_path_length

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_lasso_lars_path_length():
    # Test that the path length of the LassoLars is right
    lasso = linear_model.LassoLars()
    lasso.fit(X, y)
    lasso2 = linear_model.LassoLars(alpha=lasso.alphas_[2])
    lasso2.fit(X, y)
    assert_array_almost_equal(lasso.alphas_[:3], lasso2.alphas_)
    # Also check that the sequence of alphas is always decreasing
    assert np.all(np.diff(lasso.alphas_) < 0) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:11,代碼來源:test_least_angle.py

示例13: _create_regressor

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def _create_regressor(self):
        if self.mode == 'default':
            return Lars()
        if self.mode == 'lasso':
            return LassoLars(alpha=self.alpha)
        raise ValueError('Unexpected mode ' + self.mode + '. Expected "default" or "lasso"') 
開發者ID:danilkolikov,項目名稱:fsfc,代碼行數:8,代碼來源:MCFS.py

示例14: update_spatial_perpx

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def update_spatial_perpx(y, alpha, sub, C):
    res = np.zeros_like(sub, dtype=y.dtype)
    if np.sum(sub) > 0:
        C = C[:, sub]
        clf = LassoLars(alpha=alpha, positive=True)
        coef = clf.fit(C, y).coef_
        res[np.where(sub)[0]] = coef
    return res 
開發者ID:DeniseCaiLab,項目名稱:minian,代碼行數:10,代碼來源:cnmf.py

示例15: test_model_lasso_lars

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LassoLars [as 別名]
def test_model_lasso_lars(self):
        model, X = fit_regression_model(linear_model.LassoLars(alpha=0.01))
        model_onnx = convert_sklearn(
            model, "lasso lars",
            [("input", FloatTensorType([None, X.shape[1]]))])
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X,
            model,
            model_onnx,
            basename="SklearnLassoLars-Dec4",
            allow_failure="StrictVersion("
            "onnxruntime.__version__)"
            "<= StrictVersion('0.2.1')",
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:17,代碼來源:test_sklearn_glm_regressor_converter.py


注:本文中的sklearn.linear_model.LassoLars方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。