當前位置: 首頁>>代碼示例>>Python>>正文


Python linear_model.Lars方法代碼示例

本文整理匯總了Python中sklearn.linear_model.Lars方法的典型用法代碼示例。如果您正苦於以下問題:Python linear_model.Lars方法的具體用法?Python linear_model.Lars怎麽用?Python linear_model.Lars使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.linear_model的用法示例。


在下文中一共展示了linear_model.Lars方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_multitarget

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Lars [as 別名]
def test_multitarget():
    # Assure that estimators receiving multidimensional y do the right thing
    Y = np.vstack([y, y ** 2]).T
    n_targets = Y.shape[1]
    estimators = [
        linear_model.LassoLars(),
        linear_model.Lars(),
        # regression test for gh-1615
        linear_model.LassoLars(fit_intercept=False),
        linear_model.Lars(fit_intercept=False),
    ]

    for estimator in estimators:
        estimator.fit(X, Y)
        Y_pred = estimator.predict(X)
        alphas, active, coef, path = (estimator.alphas_, estimator.active_,
                                      estimator.coef_, estimator.coef_path_)
        for k in range(n_targets):
            estimator.fit(X, Y[:, k])
            y_pred = estimator.predict(X)
            assert_array_almost_equal(alphas[k], estimator.alphas_)
            assert_array_almost_equal(active[k], estimator.active_)
            assert_array_almost_equal(coef[k], estimator.coef_)
            assert_array_almost_equal(path[k], estimator.coef_path_)
            assert_array_almost_equal(Y_pred[:, k], y_pred) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:27,代碼來源:test_least_angle.py

示例2: get_model

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Lars [as 別名]
def get_model(PARAMS):
    '''Get model according to parameters'''
    model_dict = {
        'LinearRegression': LinearRegression(),
        'Ridge': Ridge(),
        'Lars': Lars(),
        'ARDRegression': ARDRegression()

    }
    if not model_dict.get(PARAMS['model_name']):
        LOG.exception('Not supported model!')
        exit(1)

    model = model_dict[PARAMS['model_name']]
    model.normalize = bool(PARAMS['normalize'])

    return model 
開發者ID:microsoft,項目名稱:nni,代碼行數:19,代碼來源:main.py

示例3: test_simple

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Lars [as 別名]
def test_simple():
    # Principle of Lars is to keep covariances tied and decreasing

    # also test verbose output
    from io import StringIO
    import sys
    old_stdout = sys.stdout
    try:
        sys.stdout = StringIO()

        _, _, coef_path_ = linear_model.lars_path(
            X, y, method='lar', verbose=10)

        sys.stdout = old_stdout

        for i, coef_ in enumerate(coef_path_.T):
            res = y - np.dot(X, coef_)
            cov = np.dot(X.T, res)
            C = np.max(abs(cov))
            eps = 1e-3
            ocur = len(cov[C - eps < abs(cov)])
            if i < X.shape[1]:
                assert ocur == i + 1
            else:
                # no more than max_pred variables can go into the active set
                assert ocur == X.shape[1]
    finally:
        sys.stdout = old_stdout 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:30,代碼來源:test_least_angle.py

示例4: test_lars_lstsq

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Lars [as 別名]
def test_lars_lstsq():
    # Test that Lars gives least square solution at the end
    # of the path
    X1 = 3 * X  # use un-normalized dataset
    clf = linear_model.LassoLars(alpha=0.)
    clf.fit(X1, y)
    # Avoid FutureWarning about default value change when numpy >= 1.14
    rcond = None if LooseVersion(np.__version__) >= '1.14' else -1
    coef_lstsq = np.linalg.lstsq(X1, y, rcond=rcond)[0]
    assert_array_almost_equal(clf.coef_, coef_lstsq) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:12,代碼來源:test_least_angle.py

示例5: test_lasso_gives_lstsq_solution

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Lars [as 別名]
def test_lasso_gives_lstsq_solution():
    # Test that Lars Lasso gives least square solution at the end
    # of the path
    _, _, coef_path_ = linear_model.lars_path(X, y, method='lasso')
    coef_lstsq = np.linalg.lstsq(X, y)[0]
    assert_array_almost_equal(coef_lstsq, coef_path_[:, -1]) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:8,代碼來源:test_least_angle.py

示例6: test_lasso_lars_vs_lasso_cd_ill_conditioned2

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Lars [as 別名]
def test_lasso_lars_vs_lasso_cd_ill_conditioned2():
    # Create an ill-conditioned situation in which the LARS has to go
    # far in the path to converge, and check that LARS and coordinate
    # descent give the same answers
    # Note it used to be the case that Lars had to use the drop for good
    # strategy for this but this is no longer the case with the
    # equality_tolerance checks
    X = [[1e20, 1e20, 0],
         [-1e-32, 0, 0],
         [1, 1, 1]]
    y = [10, 10, 1]
    alpha = .0001

    def objective_function(coef):
        return (1. / (2. * len(X)) * linalg.norm(y - np.dot(X, coef)) ** 2
                + alpha * linalg.norm(coef, 1))

    lars = linear_model.LassoLars(alpha=alpha, normalize=False)
    assert_warns(ConvergenceWarning, lars.fit, X, y)
    lars_coef_ = lars.coef_
    lars_obj = objective_function(lars_coef_)

    coord_descent = linear_model.Lasso(alpha=alpha, tol=1e-4, normalize=False)
    cd_coef_ = coord_descent.fit(X, y).coef_
    cd_obj = objective_function(cd_coef_)

    assert_less(lars_obj, cd_obj * (1. + 1e-8)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:29,代碼來源:test_least_angle.py

示例7: test_lars_add_features

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Lars [as 別名]
def test_lars_add_features():
    # assure that at least some features get added if necessary
    # test for 6d2b4c
    # Hilbert matrix
    n = 5
    H = 1. / (np.arange(1, n + 1) + np.arange(n)[:, np.newaxis])
    clf = linear_model.Lars(fit_intercept=False).fit(
        H, np.arange(n))
    assert np.all(np.isfinite(clf.coef_)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:11,代碼來源:test_least_angle.py

示例8: _create_regressor

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Lars [as 別名]
def _create_regressor(self):
        if self.mode == 'default':
            return Lars()
        if self.mode == 'lasso':
            return LassoLars(alpha=self.alpha)
        raise ValueError('Unexpected mode ' + self.mode + '. Expected "default" or "lasso"') 
開發者ID:danilkolikov,項目名稱:fsfc,代碼行數:8,代碼來源:MCFS.py

示例9: test_model_lars

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Lars [as 別名]
def test_model_lars(self):
        model, X = fit_regression_model(linear_model.Lars())
        model_onnx = convert_sklearn(
            model, "lars",
            [("input", FloatTensorType([None, X.shape[1]]))])
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X,
            model,
            model_onnx,
            basename="SklearnLars-Dec4",
            allow_failure="StrictVersion("
            "onnxruntime.__version__)"
            "<= StrictVersion('0.2.1')",
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:17,代碼來源:test_sklearn_glm_regressor_converter.py

示例10: test_objectmapper

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Lars [as 別名]
def test_objectmapper(self):
        df = pdml.ModelFrame([])
        self.assertIs(df.linear_model.ARDRegression, lm.ARDRegression)
        self.assertIs(df.linear_model.BayesianRidge, lm.BayesianRidge)
        self.assertIs(df.linear_model.ElasticNet, lm.ElasticNet)
        self.assertIs(df.linear_model.ElasticNetCV, lm.ElasticNetCV)

        self.assertIs(df.linear_model.HuberRegressor, lm.HuberRegressor)

        self.assertIs(df.linear_model.Lars, lm.Lars)
        self.assertIs(df.linear_model.LarsCV, lm.LarsCV)
        self.assertIs(df.linear_model.Lasso, lm.Lasso)
        self.assertIs(df.linear_model.LassoCV, lm.LassoCV)
        self.assertIs(df.linear_model.LassoLars, lm.LassoLars)
        self.assertIs(df.linear_model.LassoLarsCV, lm.LassoLarsCV)
        self.assertIs(df.linear_model.LassoLarsIC, lm.LassoLarsIC)

        self.assertIs(df.linear_model.LinearRegression, lm.LinearRegression)
        self.assertIs(df.linear_model.LogisticRegression, lm.LogisticRegression)
        self.assertIs(df.linear_model.LogisticRegressionCV, lm.LogisticRegressionCV)
        self.assertIs(df.linear_model.MultiTaskLasso, lm.MultiTaskLasso)
        self.assertIs(df.linear_model.MultiTaskElasticNet, lm.MultiTaskElasticNet)
        self.assertIs(df.linear_model.MultiTaskLassoCV, lm.MultiTaskLassoCV)
        self.assertIs(df.linear_model.MultiTaskElasticNetCV, lm.MultiTaskElasticNetCV)

        self.assertIs(df.linear_model.OrthogonalMatchingPursuit, lm.OrthogonalMatchingPursuit)
        self.assertIs(df.linear_model.OrthogonalMatchingPursuitCV, lm.OrthogonalMatchingPursuitCV)
        self.assertIs(df.linear_model.PassiveAggressiveClassifier, lm.PassiveAggressiveClassifier)
        self.assertIs(df.linear_model.PassiveAggressiveRegressor, lm.PassiveAggressiveRegressor)

        self.assertIs(df.linear_model.Perceptron, lm.Perceptron)
        self.assertIs(df.linear_model.RandomizedLasso, lm.RandomizedLasso)
        self.assertIs(df.linear_model.RandomizedLogisticRegression, lm.RandomizedLogisticRegression)
        self.assertIs(df.linear_model.RANSACRegressor, lm.RANSACRegressor)
        self.assertIs(df.linear_model.Ridge, lm.Ridge)
        self.assertIs(df.linear_model.RidgeClassifier, lm.RidgeClassifier)
        self.assertIs(df.linear_model.RidgeClassifierCV, lm.RidgeClassifierCV)
        self.assertIs(df.linear_model.RidgeCV, lm.RidgeCV)
        self.assertIs(df.linear_model.SGDClassifier, lm.SGDClassifier)
        self.assertIs(df.linear_model.SGDRegressor, lm.SGDRegressor)
        self.assertIs(df.linear_model.TheilSenRegressor, lm.TheilSenRegressor) 
開發者ID:pandas-ml,項目名稱:pandas-ml,代碼行數:43,代碼來源:test_linear_model.py

示例11: test_simple

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Lars [as 別名]
def test_simple():
    # Principle of Lars is to keep covariances tied and decreasing

    # also test verbose output
    from sklearn.externals.six.moves import cStringIO as StringIO
    import sys
    old_stdout = sys.stdout
    try:
        sys.stdout = StringIO()

        alphas_, active, coef_path_ = linear_model.lars_path(
            diabetes.data, diabetes.target, method="lar", verbose=10)

        sys.stdout = old_stdout

        for (i, coef_) in enumerate(coef_path_.T):
            res = y - np.dot(X, coef_)
            cov = np.dot(X.T, res)
            C = np.max(abs(cov))
            eps = 1e-3
            ocur = len(cov[C - eps < abs(cov)])
            if i < X.shape[1]:
                assert_true(ocur == i + 1)
            else:
                # no more than max_pred variables can go into the active set
                assert_true(ocur == X.shape[1])
    finally:
        sys.stdout = old_stdout 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:30,代碼來源:test_least_angle.py

示例12: test_lars_lstsq

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Lars [as 別名]
def test_lars_lstsq():
    # Test that Lars gives least square solution at the end
    # of the path
    X1 = 3 * diabetes.data  # use un-normalized dataset
    clf = linear_model.LassoLars(alpha=0.)
    clf.fit(X1, y)
    coef_lstsq = np.linalg.lstsq(X1, y)[0]
    assert_array_almost_equal(clf.coef_, coef_lstsq) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:10,代碼來源:test_least_angle.py

示例13: test_lasso_gives_lstsq_solution

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Lars [as 別名]
def test_lasso_gives_lstsq_solution():
    # Test that Lars Lasso gives least square solution at the end
    # of the path
    alphas_, active, coef_path_ = linear_model.lars_path(X, y, method="lasso")
    coef_lstsq = np.linalg.lstsq(X, y)[0]
    assert_array_almost_equal(coef_lstsq, coef_path_[:, -1]) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:8,代碼來源:test_least_angle.py

示例14: test_lars_precompute

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Lars [as 別名]
def test_lars_precompute():
    # Check for different values of precompute
    X, y = diabetes.data, diabetes.target
    G = np.dot(X.T, X)
    for classifier in [linear_model.Lars, linear_model.LarsCV,
                       linear_model.LassoLarsIC]:
        clf = classifier(precompute=G)
        output_1 = ignore_warnings(clf.fit)(X, y).coef_
        for precompute in [True, False, 'auto', None]:
            clf = classifier(precompute=precompute)
            output_2 = clf.fit(X, y).coef_
            assert_array_almost_equal(output_1, output_2, decimal=8) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:14,代碼來源:test_least_angle.py

示例15: test_lars_n_nonzero_coefs

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import Lars [as 別名]
def test_lars_n_nonzero_coefs(verbose=False):
    lars = linear_model.Lars(n_nonzero_coefs=6, verbose=verbose)
    lars.fit(X, y)
    assert_equal(len(lars.coef_.nonzero()[0]), 6)
    # The path should be of length 6 + 1 in a Lars going down to 6
    # non-zero coefs
    assert_equal(len(lars.alphas_), 7) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:9,代碼來源:test_least_angle.py


注:本文中的sklearn.linear_model.Lars方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。