當前位置: 首頁>>代碼示例>>Python>>正文


Python linear_model.ElasticNet方法代碼示例

本文整理匯總了Python中sklearn.linear_model.ElasticNet方法的典型用法代碼示例。如果您正苦於以下問題:Python linear_model.ElasticNet方法的具體用法?Python linear_model.ElasticNet怎麽用?Python linear_model.ElasticNet使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.linear_model的用法示例。


在下文中一共展示了linear_model.ElasticNet方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_ensemble

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import ElasticNet [as 別名]
def build_ensemble(**kwargs):
    """Generate ensemble."""

    ens = SuperLearner(**kwargs)
    prep = {'Standard Scaling': [StandardScaler()],
            'Min Max Scaling': [MinMaxScaler()],
            'No Preprocessing': []}

    est = {'Standard Scaling':
               [ElasticNet(), Lasso(), KNeighborsRegressor()],
           'Min Max Scaling':
               [SVR()],
           'No Preprocessing':
               [RandomForestRegressor(random_state=SEED),
                GradientBoostingRegressor()]}

    ens.add(est, prep)

    ens.add(GradientBoostingRegressor(), meta=True)

    return ens 
開發者ID:flennerhag,項目名稱:mlens,代碼行數:23,代碼來源:friedman_scores.py

示例2: test_n_clusters

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import ElasticNet [as 別名]
def test_n_clusters():
    # Test that n_clusters param works properly
    X, y = make_blobs(n_samples=100, centers=10)
    brc1 = Birch(n_clusters=10)
    brc1.fit(X)
    assert_greater(len(brc1.subcluster_centers_), 10)
    assert_equal(len(np.unique(brc1.labels_)), 10)

    # Test that n_clusters = Agglomerative Clustering gives
    # the same results.
    gc = AgglomerativeClustering(n_clusters=10)
    brc2 = Birch(n_clusters=gc)
    brc2.fit(X)
    assert_array_equal(brc1.subcluster_labels_, brc2.subcluster_labels_)
    assert_array_equal(brc1.labels_, brc2.labels_)

    # Test that the wrong global clustering step raises an Error.
    clf = ElasticNet()
    brc3 = Birch(n_clusters=clf)
    assert_raises(ValueError, brc3.fit, X)

    # Test that a small number of clusters raises a warning.
    brc4 = Birch(threshold=10000.)
    assert_warns(ConvergenceWarning, brc4.fit, X) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:26,代碼來源:test_birch.py

示例3: getModels

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import ElasticNet [as 別名]
def getModels():
    result = []
    result.append("LinearRegression")
    result.append("BayesianRidge")
    result.append("ARDRegression")
    result.append("ElasticNet")
    result.append("HuberRegressor")
    result.append("Lasso")
    result.append("LassoLars")
    result.append("Rigid")
    result.append("SGDRegressor")
    result.append("SVR")
    result.append("MLPClassifier")
    result.append("KNeighborsClassifier")
    result.append("SVC")
    result.append("GaussianProcessClassifier")
    result.append("DecisionTreeClassifier")
    result.append("RandomForestClassifier")
    result.append("AdaBoostClassifier")
    result.append("GaussianNB")
    result.append("LogisticRegression")
    result.append("QuadraticDiscriminantAnalysis")
    return result 
開發者ID:tech-quantum,項目名稱:sia-cog,代碼行數:25,代碼來源:scikitlearn.py

示例4: test_model_elastic_net_regressor

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import ElasticNet [as 別名]
def test_model_elastic_net_regressor(self):
        model, X = fit_regression_model(linear_model.ElasticNet())
        model_onnx = convert_sklearn(
            model,
            "scikit-learn elastic-net regression",
            [("input", FloatTensorType([None, X.shape[1]]))],
        )
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X,
            model,
            model_onnx,
            basename="SklearnElasticNet-Dec4",
            allow_failure="StrictVersion("
            "onnxruntime.__version__)"
            "<= StrictVersion('0.2.1')",
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:19,代碼來源:test_sklearn_glm_regressor_converter.py

示例5: test_model_elastic_net_regressor_bool

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import ElasticNet [as 別名]
def test_model_elastic_net_regressor_bool(self):
        model, X = fit_regression_model(
            linear_model.ElasticNet(), is_bool=True)
        model_onnx = convert_sklearn(
            model, "elastic net regression",
            [("input", BooleanTensorType([None, X.shape[1]]))])
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X,
            model,
            model_onnx,
            basename="SklearnElasticNetRegressorBool",
            allow_failure="StrictVersion("
            "onnxruntime.__version__)"
            "<= StrictVersion('0.2.1')",
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:18,代碼來源:test_sklearn_glm_regressor_converter.py

示例6: test_n_clusters

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import ElasticNet [as 別名]
def test_n_clusters():
    # Test that n_clusters param works properly
    X, y = make_blobs(n_samples=100, centers=10)
    brc1 = Birch(n_clusters=10)
    brc1.fit(X)
    assert_greater(len(brc1.subcluster_centers_), 10)
    assert_equal(len(np.unique(brc1.labels_)), 10)

    # Test that n_clusters = Agglomerative Clustering gives
    # the same results.
    gc = AgglomerativeClustering(n_clusters=10)
    brc2 = Birch(n_clusters=gc)
    brc2.fit(X)
    assert_array_equal(brc1.subcluster_labels_, brc2.subcluster_labels_)
    assert_array_equal(brc1.labels_, brc2.labels_)

    # Test that the wrong global clustering step raises an Error.
    clf = ElasticNet()
    brc3 = Birch(n_clusters=clf)
    assert_raises(ValueError, brc3.fit, X)

    # Test that a small number of clusters raises a warning.
    brc4 = Birch(threshold=10000.)
    assert_warns(UserWarning, brc4.fit, X) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:26,代碼來源:test_birch.py

示例7: get_regression_coefs

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import ElasticNet [as 別名]
def get_regression_coefs(self, category, clf=ElasticNet()):
        ''' Computes regression score of tdfidf transformed features
        Parameters
        ----------
        category : str
            category name to score
        clf : sklearn regressor

        Returns
        -------
        coefficient array
        '''
        self._fit_tfidf_model(category, clf)
        return clf.coef_ 
開發者ID:JasonKessler,項目名稱:scattertext,代碼行數:16,代碼來源:TermDocMatrix.py

示例8: build_ensemble

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import ElasticNet [as 別名]
def build_ensemble(**kwargs):
    """Generate ensemble."""

    ens = SuperLearner(**kwargs)

    est = [ElasticNet(copy_X=False),
           Lasso(copy_X=False)]

    ens.add(est)
    ens.add(KNeighborsRegressor())

    return ens 
開發者ID:flennerhag,項目名稱:mlens,代碼行數:14,代碼來源:friedman_memory.py

示例9: test_elasticnet_convergence

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import ElasticNet [as 別名]
def test_elasticnet_convergence(klass):
    # Check that the SGD output is consistent with coordinate descent

    n_samples, n_features = 1000, 5
    rng = np.random.RandomState(0)
    X = rng.randn(n_samples, n_features)
    # ground_truth linear model that generate y from X and to which the
    # models should converge if the regularizer would be set to 0.0
    ground_truth_coef = rng.randn(n_features)
    y = np.dot(X, ground_truth_coef)

    # XXX: alpha = 0.1 seems to cause convergence problems
    for alpha in [0.01, 0.001]:
        for l1_ratio in [0.5, 0.8, 1.0]:
            cd = linear_model.ElasticNet(alpha=alpha, l1_ratio=l1_ratio,
                                         fit_intercept=False)
            cd.fit(X, y)
            sgd = klass(penalty='elasticnet', max_iter=50,
                        alpha=alpha, l1_ratio=l1_ratio,
                        fit_intercept=False)
            sgd.fit(X, y)
            err_msg = ("cd and sgd did not converge to comparable "
                       "results for alpha=%f and l1_ratio=%f"
                       % (alpha, l1_ratio))
            assert_almost_equal(cd.coef_, sgd.coef_, decimal=2,
                                err_msg=err_msg) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:28,代碼來源:test_sgd.py

示例10: test_compare_sklearn

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import ElasticNet [as 別名]
def test_compare_sklearn(solver):
    """Test results against sklearn."""
    def rmse(a, b):
        return np.sqrt(np.mean((a - b) ** 2))

    X, Y, coef_ = make_regression(
        n_samples=1000, n_features=1000,
        noise=0.1, n_informative=10, coef=True,
        random_state=42)

    alpha = 0.1
    l1_ratio = 0.5

    clf = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, tol=1e-5)
    clf.fit(X, Y)
    glm = GLM(distr='gaussian', alpha=l1_ratio, reg_lambda=alpha,
              solver=solver, tol=1e-5, max_iter=70)
    glm.fit(X, Y)

    y_sk = clf.predict(X)
    y_pg = glm.predict(X)
    assert abs(rmse(Y, y_sk) - rmse(Y, y_pg)) < 1.0

    glm = GLM(distr='gaussian', alpha=l1_ratio, reg_lambda=alpha,
              solver=solver, tol=1e-5, max_iter=5, fit_intercept=False)
    glm.fit(X, Y)
    assert glm.beta0_ == 0.

    glm.predict(X) 
開發者ID:glm-tools,項目名稱:pyglmnet,代碼行數:31,代碼來源:test_pyglmnet.py

示例11: learn_model

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import ElasticNet [as 別名]
def learn_model(self, x, y, clf, lam = None):
        if (lam is None and self.initlam != -1):
            lam = self.initlam
        if (clf is not None):
            if (lam is not None):
                clf = linear_model.ElasticNetCV(max_iter = 10000)
                clf.fit(x, y)
                lam = clf.alpha_
            clf = linear_model.ElasticNet(alpha = lam, \
                                          max_iter = 10000, \
                                          warm_start = True)
        clf.fit(x, y)
        return clf, lam 
開發者ID:jagielski,項目名稱:manip-ml,代碼行數:15,代碼來源:gd_poisoners.py

示例12: __init__

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import ElasticNet [as 別名]
def __init__(self, options):
        self.handle_options(options)

        out_params = convert_params(
            options.get('params', {}),
            bools=['fit_intercept', 'normalize'],
            floats=['alpha', 'l1_ratio'],
        )

        if 'l1_ratio' in out_params:
            if out_params['l1_ratio'] < 0 or out_params['l1_ratio'] > 1:
                raise RuntimeError('l1_ratio must be >= 0 and <= 1')

        self.estimator = _ElasticNet(**out_params) 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:16,代碼來源:ElasticNet.py

示例13: test_ElasticNet

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import ElasticNet [as 別名]
def test_ElasticNet(self):
        ElasticNetAlgo.register_codecs()
        self.regressor_util(ElasticNet) 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:5,代碼來源:test_codec.py

示例14: ensure_many_models

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import ElasticNet [as 別名]
def ensure_many_models(self):
        from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor
        from sklearn.neural_network import MLPRegressor
        from sklearn.linear_model import ElasticNet, RANSACRegressor, HuberRegressor, PassiveAggressiveRegressor
        from sklearn.neighbors import KNeighborsRegressor
        from sklearn.svm import SVR, LinearSVR

        from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier
        from sklearn.neural_network import MLPClassifier
        from sklearn.neighbors import KNeighborsClassifier

        from sklearn.exceptions import ConvergenceWarning
        warnings.filterwarnings('ignore', category=ConvergenceWarning)

        data = self.create_uninformative_ox_dataset()
        for propensity_learner in [GradientBoostingClassifier(n_estimators=10),
                                   RandomForestClassifier(n_estimators=100),
                                   MLPClassifier(hidden_layer_sizes=(5,)),
                                   KNeighborsClassifier(n_neighbors=20)]:
            weight_model = IPW(propensity_learner)
            propensity_learner_name = str(propensity_learner).split("(", maxsplit=1)[0]
            for outcome_learner in [GradientBoostingRegressor(n_estimators=10), RandomForestRegressor(n_estimators=10),
                                    MLPRegressor(hidden_layer_sizes=(5,)),
                                    ElasticNet(), RANSACRegressor(), HuberRegressor(), PassiveAggressiveRegressor(),
                                    KNeighborsRegressor(), SVR(), LinearSVR()]:
                outcome_learner_name = str(outcome_learner).split("(", maxsplit=1)[0]
                outcome_model = Standardization(outcome_learner)

                with self.subTest("Test fit & predict using {} & {}".format(propensity_learner_name,
                                                                            outcome_learner_name)):
                    model = self.estimator.__class__(outcome_model, weight_model)
                    model.fit(data["X"], data["a"], data["y"], refit_weight_model=False)
                    model.estimate_individual_outcome(data["X"], data["a"])
                    self.assertTrue(True)  # Fit did not crash 
開發者ID:IBM,項目名稱:causallib,代碼行數:36,代碼來源:test_doublyrobust.py

示例15: test_lm

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import ElasticNet [as 別名]
def test_lm(self):
		_checkLM(ElasticNet())
		_checkLM(LinearRegression())
		_checkLM(SGDRegressor()) 
開發者ID:jpmml,項目名稱:sklearn2pmml,代碼行數:6,代碼來源:__init__.py


注:本文中的sklearn.linear_model.ElasticNet方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。